login
A003275
Values of phi(k) when phi(k) = phi(k+1).
(Formerly M1874)
5
1, 2, 8, 48, 80, 96, 128, 240, 288, 480, 1008, 1200, 1296, 1440, 1728, 2592, 2592, 4800, 5600, 6480, 8640, 11040, 12480, 14976, 19008, 19200, 22464, 24320, 24576, 21120, 28416, 27840, 25920, 32000, 32768, 36000, 47520, 52992, 60480, 59904, 79200, 89280, 96768
OFFSET
1,2
COMMENTS
In other words, consider k = 1,2,3,4,..., and if phi(k) = phi(k+1), add phi(k) to the sequence.
REFERENCES
Richard K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004, Section B36, pp. 138-142.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10755 (calculated from the b-file at A001274; terms 1..2567 from T. D. Noe)
Kathryn Miller, The equation phi(n) = phi(n+1), Unpublished M.S., ND..
Kathryn Miller, Solutions of phi(n) = phi(n+1) for 1 <= n <= 500000. Unpublished, 1972. [ See Review, Math. Comp., Vol. 27, p. 447-448, 1973 ].
Kathryn Miller, Solutions of phi(n) = phi(n+1) for 1 <= n <= 500000, Mathematics of Computation 27 (1973), 47-48. (Annotated scanned copy)
Leo Moser, Some equations involving Euler's totient function, Amer. Math. Monthly, 56 (1949), 22-23.
Eric Weisstein's World of Mathematics, Totient Function.
FORMULA
a(n) = A000010(A001274(n)). - Reinhard Zumkeller, May 20 2014
MATHEMATICA
Cases[Split[Table[EulerPhi[k], {k, 1, 50000}]], {_, _}][[1;; 27, 1]] (* Jean-François Alcover, Mar 20 2011 *)
#[[1]]&/@Select[Partition[EulerPhi[Range[80000]], 2, 1], #[[1]]==#[[2]]&] (* Harvey P. Dale, Oct 03 2012 *)
SequenceCases[EulerPhi[Range[200000]], {x_, x_}][[All, 1]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Mar 05 2019 *)
PROG
(Haskell)
a003275 = a000010 . fromIntegral . a001274
-- Reinhard Zumkeller, May 20 2014
(PARI) lista(lim) = my(p1 = 1, p2); for(k = 2, lim, p2 = eulerphi(k); if(p1 == p2, print1(p1, ", ")); p1 = p2); \\ Amiram Eldar, Nov 27 2024
CROSSREFS
Sequence in context: A380236 A181413 A358822 * A253665 A078558 A003032
KEYWORD
nonn,nice
STATUS
approved