This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A181413 a(n) is the smallest number such that a(n)^2 + 1 is divisible by A002144(1)* A002144(2)*...* A002144(n). 3
 2, 8, 47, 2163, 18543, 241727, 3101272, 842894268, 8245041748, 521781374353, 101476250977928, 671795954794788, 32126984574675193, 425090834074746637, 309609468228403885693, 25836182225971546313682, 38544366727563360743217, 217758730168965028986551783, 25789605237863389220212237968, 309600287787935978580674202007 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 LINKS EXAMPLE a(1) = 2 because A002144(1) | 2^2+1 = 5 ; a(2)=8 because A002144(1) * A002144(2) | 8^2+1 = 5*13 ; a(6) = 241727 because A002144(1) * A002144(2)*...* A002144(6) | 241727^2+1   = 2 * 5 * 13 * 17 * 29 * 37 * 41 * 601. MAPLE with(numtheory):nn:=1000:T:=array(1..1000):k:=1:for x from 1 to nn do: p:=4*x+1:if   type(p, prime)=true then T[k]:=p:k:=k+1:else fi:od:pr:=1:for n from 1 to k do:   pp:=pr*T[n] :ind:=0:for q from 1 to pp while (ind=0) do: z:=q^2+1:if irem(z, pp)=0   and ind = 0 then ind: = 1:pr:=pp:print( q):else fi:od:od: # Alternative PP:= select(isprime, [seq(i, i=5..200, 4)]): f:= n -> min(map(t -> rhs(op(t)), [msolve(x^2+1, convert(PP[1..n], `*`))])): map(f, [\$1..20]); # Robert Israel, Feb 01 2019 CROSSREFS Cf. A002144 (Pythagorean primes: primes of form 4n+1) A002731. Sequence in context: A259905 A233337 A199136 * A003275 A253665 A078558 Adjacent sequences:  A181410 A181411 A181412 * A181414 A181415 A181416 KEYWORD nonn AUTHOR Michel Lagneau, Jan 28 2011 EXTENSIONS More terms from Robert Israel, Feb 01 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 19 22:14 EDT 2019. Contains 325168 sequences. (Running on oeis4.)