login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A003272
a(n) = ceiling((-4n)/Bernoulli(2n)).
1
0, -24, 240, -504, 480, -264, 95, -24, 5, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0
OFFSET
0,2
REFERENCES
Douglas C. Ravenel, Complex cobordism theory for number theorists, Lecture Notes in Mathematics, 1326, Springer-Verlag, Berlin-New York, 1988, pp. 123-133.
F. Hirzebruch et al., Manifolds and Modular Forms, Vieweg, 2nd ed. 1994, p. 130.
MATHEMATICA
Table[Ceiling[(-4n)/BernoulliB[2n]], {n, 0, 75}] (* Alonso del Arte, Jul 19 2012 *)
PROG
(PARI) vector(75, n, n--; ceil(-4*n/bernfrac(2*n))) \\ G. C. Greubel, Jul 04 2019
(Magma) [Ceiling(-4*n/Bernoulli(2*n)): n in [0..75]]; // G. C. Greubel, Jul 04 2019
(Sage) [ceil(-4*n/bernoulli(2*n)) for n in (0..75)] # G. C. Greubel, Jul 04 2019
CROSSREFS
Sequence in context: A081863 A247825 A003264 * A003245 A006863 A335128
KEYWORD
sign
STATUS
approved