login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A002737
a(n) = Sum_{j=0..n} (n+j)*binomial(n+j,j).
(Formerly M3975 N1644)
2
0, 5, 35, 189, 924, 4290, 19305, 85085, 369512, 1587222, 6760390, 28601650, 120349800, 504131940, 2103781365, 8751023325, 36300541200, 150217371150, 620309379690, 2556724903590, 10520494818600, 43225511319900, 177361820257050, 726860987017074, 2975511197688624, 12168371410300700
OFFSET
0,2
COMMENTS
The former title was "Coefficients for extrapolation".
REFERENCES
J. Ser, Les Calculs Formels des Séries de Factorielles. Gauthier-Villars, Paris, 1933, p. 93.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
J. Ser, Les Calculs Formels des Séries de Factorielles, Gauthier-Villars, Paris, 1933 [Local copy].
J. Ser, Les Calculs Formels des Séries de Factorielles (Annotated scans of some selected pages)
FORMULA
a(n) = Sum_{j=0..n} binomial(n+j,j)*(n+j). - Zerinvary Lajos, Aug 30 2006
a(n) = n*binomial(2*n+4, n+2)/4. - Zerinvary Lajos, Feb 28 2007
These 2 formulas are correct - see A331432. - N. J. A. Sloane, Jan 17 2020
a(n) = (n*(2*n + 3)*binomial(2*n + 1, n + 1))/(n + 2). - Peter Luschny, Jan 18 2020
E.g.f.: exp(2*x) * ((1 - 3*x + 8*x^2) * BesselI(1,2*x) / x - (1 - 8*x) * BesselI(0,2*x)). - Ilya Gutkovskiy, Nov 03 2021
G.f.: ((1-3*x -4*x^2)*sqrt(1-4*x) -(1-5*x))/(2*x^2*(1-4*x)^(3/2)). - G. C. Greubel, Mar 23 2022
MAPLE
t5 := n-> add(binomial(n+j, j)*(n+j), j=0..n); [seq(t5(n), n=0..40)];
# Alternative:
A002737 := n -> (n*(2*n + 3)*binomial(2*n+1, n+1))/(n + 2):
seq(A002737(n), n=0..25); # Peter Luschny, Jan 18 2020
MATHEMATICA
Table[n(2n+3)Binomial[2n+1, n+1]/(n+2), {n, 0, 25}] (* Vincenzo Librandi, Jan 19 2020 *)
PROG
(Magma) [(n*(2*n+3)*Binomial(2*n+1, n+1))/(n+2): n in [0..30]]; // Vincenzo Librandi, Jan 19 2020
(SageMath) [n*(n+3)*catalan_number(n+2)/4 for n in (0..30)] # G. C. Greubel, Mar 23 2022
CROSSREFS
A diagonal of A331432.
Cf. A000108.
Sequence in context: A043014 A165755 A166149 * A241779 A265976 A123008
KEYWORD
nonn
EXTENSIONS
Entry revised by N. J. A. Sloane, Jan 18 2020
STATUS
approved