login
A002537
a(2n) = a(2n-1) + 3a(2n-2), a(2n+1) = 2a(2n) + 3a(2n-1).
(Formerly M3409 N1379)
2
1, 1, 4, 11, 23, 79, 148, 533, 977, 3553, 6484, 23627, 43079, 157039, 286276, 1043669, 1902497, 6936001, 12643492, 46094987, 84025463, 306335887, 558412276, 2035832213, 3711069041, 13529634721, 24662841844, 89914587851
OFFSET
0,3
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
A. Tarn, Approximations to certain square roots and the series of numbers connected therewith, Mathematical Questions and Solutions from the Educational Times, 1 (1916), 8-12.
LINKS
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
FORMULA
a(n)=8a(n-2)-9a(n-4). - Mario Catalani (mario.catalani(AT)unito.it), Apr 24 2003
G.f.: (1+x-4x^2+3x^3)/(1-8x^2+9x^4). a(n)/A002536(n) converges to sqrt(7). - Mario Catalani (mario.catalani(AT)unito.it), Apr 24 2003
a(n+1) = x^n + (-1)^n*(x-2)^n where x = (1+sqrt(7)) and the term is divided by 2 for a(2) and a(3), 4 for a(4) and a(5)... 2^n for a(2n) and a(2n+1). - Ben Paul Thurston, Aug 30 2006
MAPLE
A002537:=(1+z-4*z**2+3*z**3)/(1-8*z**2+9*z**4); # conjectured by Simon Plouffe in his 1992 dissertation
MATHEMATICA
LinearRecurrence[{0, 8, 0, -9}, {1, 1, 4, 11}, 40] (* Harvey P. Dale, Jul 24 2012 *)
CROSSREFS
Sequence in context: A182707 A022495 A238489 * A295001 A230150 A301109
KEYWORD
nonn
EXTENSIONS
More terms from James A. Sellers, Sep 08 2000
STATUS
approved