This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A002535 a(n) = 2*a(n-1) + 9*a(n-2), with a(0)=a(1)=1. (Formerly M4786 N2043) 10
 1, 1, 11, 31, 161, 601, 2651, 10711, 45281, 186961, 781451, 3245551, 13524161, 56258281, 234234011, 974792551, 4057691201, 16888515361, 70296251531, 292589141311, 1217844546401, 5068991364601, 21098583646811, 87818089575031, 365523431971361, 1521409670118001, 6332530227978251 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS From Gary W. Adamson, Sep 06 2008: (Start) Equals right border of triangle A143970. Starting (1, 11, 31, 161, ...) = row sums of triangle A143970 and INVERT transform of (1, 10, 10, 10, ...). (End) Binomial transform of [1, 0, 10, 0, 100, 0, 1000, 0, 10000, 0, ...]=: powers of 10 (A011557) with interpolated zeros. Inverse binomial transform of A084132. - Philippe Deléham, Dec 02 2008 a(n) is the number of compositions of n when there are 1 type of 1 and 10 types of other natural numbers. - Milan Janjic, Aug 13 2010 REFERENCES N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). A. Tarn, Approximations to certain square roots and the series of numbers connected therewith, Mathematical Questions and Solutions from the Educational Times, 1 (1916), 8-12. LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..1000 Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992. Simon Plouffe, 1031 Generating Functions and Conjectures, Université du Québec à Montréal, 1992. Albert Tarn, Approximations to certain square roots and the series of numbers connected therewith [Annotated scanned copy] Index entries for linear recurrences with constant coefficients, signature (2, 9). FORMULA From Paul Barry, May 16 2003: (Start) a(n) = ((1+sqrt(10))^n + (1-sqrt(10))^n)/2. G.f.: (1-x)/(1-2*x-9*x^2). E.g.f.: exp(x)*cosh(sqrt(10)*x). (End) a(n) = Sum_{k=0..n} A098158(n,k)*10^(n-k). - Philippe Deléham, Dec 26 2007 If p[1]=1, and p[i]=10,(i>1), and if A is Hessenberg matrix of order n defined by: A[i,j]=p[j-i+1], (i<=j), A [i,j]=-1, (i=j+1), and A[i,j]=0 otherwise. Then, for n>=1, a(n)=det A. - Milan Janjic, Apr 29 2010 MAPLE A002535:=(-1+z)/(-1+2*z+9*z**2); # conjectured by Simon Plouffe in his 1992 dissertation MATHEMATICA Table[ MatrixPower[{{1, 2}, {5, 1}}, n][[1, 1]], {n, 0, 30}] (* Vladimir Joseph Stephan Orlovsky, Feb 20 2010 *) a[n_] := Simplify[((1 + Sqrt[10])^n + (1 - Sqrt[10])^n)/2]; Array[a, 30, 0] (* Or *) CoefficientList[Series[(1+9x)/(1-2x-9x^2), {x, 0, 30}], x] (* Or *) LinearRecurrence[{2, 9}, {1, 1}, 30] (* Robert G. Wilson v, Sep 18 2013 *) PROG (MAGMA) [Ceiling((1+Sqrt(10))^n/2+(1-Sqrt(10))^n/2): n in [0..30]]; // Vincenzo Librandi, Aug 15 2011 (MAGMA) I:=[1, 1]; [n le 2 select I[n] else 2*Self(n-1)+9*Self(n-2): n in [1..30]]; // G. C. Greubel, Aug 02 2019 (PARI) my(x='x+O('x^30)); Vec((1-x)/(1-2*x-9*x^2)) \\ G. C. Greubel, Aug 02 2019 (Sage) ((1-x)/(1-2*x-9*x^2)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Aug 02 2019 (GAP) a:=[1, 1];; for n in [3..30] do a[n]:=2*a[n-1]+9*a[n-2]; od; a; # G. C. Greubel, Aug 02 2019 CROSSREFS Cf. A143970. - Gary W. Adamson, Sep 06 2008 Sequence in context: A190781 A001604 A144727 * A128337 A093382 A098264 Adjacent sequences:  A002532 A002533 A002534 * A002536 A002537 A002538 KEYWORD nonn,easy AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 20 17:04 EDT 2019. Contains 327242 sequences. (Running on oeis4.)