This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A002174 Values taken by reduced totient function psi(n). (Formerly M0986 N0370) 14
 1, 2, 4, 6, 8, 10, 12, 16, 18, 20, 22, 24, 28, 30, 32, 36, 40, 42, 44, 46, 48, 52, 54, 56, 58, 60, 64, 66, 70, 72, 78, 80, 82, 84, 88, 90, 92, 96, 100, 102, 104, 106, 108, 110, 112, 116, 120, 126, 128, 130, 132, 136, 138, 140, 144, 148, 150, 156, 160, 162, 164, 166, 168 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS If p is a Sophie Germain prime (A005384), then 2p is here. - T. D. Noe, Aug 13 2008 Terms of A002322, sorted and multiple values taken just once. - Vladimir Joseph Stephan Orlovsky, Jul 21 2009 a(2445343) = 10^7, suggesting that Luca & Pomerance's lower bound may be closer to the truth than the upper bound. The fit exponent log a(n)/log n - 1 = 0.0957... in this case. - Charles R Greathouse IV, Jul 02 2017 REFERENCES N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS T. D. Noe, Table of n, a(n) for n = 1..10000 D. H. Lehmer, Guide to Tables in the Theory of Numbers, Bulletin No. 105, National Research Council, Washington, DC, 1941, pp. 7-10. Florian Luca and Carl Pomerance, On the range of Carmichael's universal-exponent function, Acta Arithmetica 162 (2014), pp.289-308. C. Moreau, Sur quelques théorèmes d'arithmétique, Nouvelles Annales de Mathématiques, 17 (1898), 293-307. FORMULA n (log n)^0.086 << a(n) << n (log n)^0.36 where << is the Vinogradov symbol, see Luca & Pomerance. - Charles R Greathouse IV, Dec 28 2013 MATHEMATICA lst={}; Do[AppendTo[lst, CarmichaelLambda[n]], {n, 6*7!}]; lst; Take[Union[lst], 123] (* Vladimir Joseph Stephan Orlovsky, Jul 21 2009 *) (* warning: there seems to be no guarantee that no terms near the end are omitted! - Joerg Arndt, Dec 23 2014 *) TakeWhile[Union@ Table[CarmichaelLambda@ n, {n, 10^6}], # <= 168 &] (* Michael De Vlieger, Mar 19 2016 *) PROG (PARI) list(lim)=my(v=List([1]), u, t); forprime(p=3, lim\3+1, u=List(); listput(u, p-1); while((t=u[#u]*p)<=lim, listput(u, t)); for(j=1, #v, for(i=1, #u, t=lcm(u[i], v[j]); if(t<=lim && t!=v[j], listput(v, t)))); v=List(Set(v))); forprime(p=lim\3+2, lim+1, listput(v, p-1)); v=List(Set(v)); for(i=1, #v, t=2*v[i]; if(t>lim, break); listput(v, t); while((t*=2)<=lim, listput(v, t))); Set(v) \\ Charles R Greathouse IV, Jun 23 2017 (PARI) is(n)=if(n%2, return(n==1)); my(f=factor(n), pe); for(i=1, #f~, if(n%(f[i, 1]-1)==0, next); pe=f[i, 1]^f[i, 2]; forstep(q=2*pe+1, n+1, 2*pe, if(n%(q-1)==0 && isprime(q), next(2))); return(0)); 1 \\ Charles R Greathouse IV, Jun 25 2017 CROSSREFS Cf. A002322, A002396, A143407, A143408. Sequence in context: A011860 A259278 A049445 * A002202 A049225 A076450 Adjacent sequences:  A002171 A002172 A002173 * A002175 A002176 A002177 KEYWORD nonn,nice AUTHOR EXTENSIONS More terms from T. D. Noe, Aug 13 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 19 13:11 EDT 2019. Contains 324222 sequences. (Running on oeis4.)