This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A001926 G.f.: (1+x)^2/[(1-x)^4(1-x-x^2)^3]. (Formerly M4628 N1978) 2
 1, 9, 46, 177, 571, 1632, 4270, 10446, 24244, 53942, 115954, 242240, 494087, 987503, 1939634, 3753007, 7167461, 13532608, 25293964, 46856332, 86110792, 157125052, 284866900, 513470464, 920659517, 1642844485, 2918680214, 5164483453, 9104522495, 15995633440 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS From rook polynomials. REFERENCES J. Riordan, Discordant permutations, Scripta Math., 20 (1954), 14-23. N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS T. D. Noe, Table of n, a(n) for n = 0..1000 Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992. Simon Plouffe, 1031 Generating Functions and Conjectures, Université du Québec à Montréal, 1992. J. Riordan, Discordant permutations, Scripta Math., 20 (1954), 14-23. [Annotated scanned copy] MAPLE A001926:=-(1+z)**2/(z**2+z-1)**3/(z-1)**4; [Conjectured (correctly) by Simon Plouffe in his 1992 dissertation.] MATHEMATICA nn = 30; CoefficientList[Series[(1 + x)^2/((1 - x)^4 (1 - x - x^2)^3), {x, 0, nn}], x] (* T. D. Noe, Aug 17 2012 *) CROSSREFS Second differences are in A002941. Sequence in context: A201458 A034487 A035039 * A213749 A085385 A217152 Adjacent sequences:  A001923 A001924 A001925 * A001927 A001928 A001929 KEYWORD nonn AUTHOR EXTENSIONS Edited by N. J. A. Sloane, Apr 10 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 14 05:08 EDT 2019. Contains 327995 sequences. (Running on oeis4.)