OFFSET
0,3
COMMENTS
From Gus Wiseman, Feb 14 2024: (Start)
Also the number of minimal loop-graphs covering n vertices. This is the minimal case of A322661. For example, the a(0) = 1 through a(3) = 7 loop-graphs are (loops represented as singletons):
{} {1} {12} {1-23}
{1-2} {2-13}
{3-12}
{12-13}
{12-23}
{13-23}
{1-2-3}
(End)
REFERENCES
I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, John Wiley and Sons, N.Y., 1983. See (3.3.7): number of ways to cover the complete graph K_n with star graphs.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
T. D. Noe, Table of n, a(n) for n = 0..100
John Riordan, Forests of labeled trees, J. Combin. Theory, 5 (1968), 90-103.
John Riordan, Letter to N. J. A. Sloane, Oct. 1970
John Riordan and N. J. A. Sloane, Correspondence, 1974
FORMULA
E.g.f.: exp(x*(exp(x)-x/2)).
Binomial transform of A053530. - Gus Wiseman, Feb 14 2024
MATHEMATICA
Range[0, 20]! CoefficientList[Series[Exp[x Exp[x] - x^2/2], {x, 0, 20}], x] (* Geoffrey Critzer, Mar 13 2011 *)
fasmin[y_]:=Complement[y, Union@@Table[Union[s, #]& /@ Rest[Subsets[Complement[Union@@y, s]]], {s, y}]];
Table[Length@fasmin[Select[Subsets[Subsets[Range[n], {1, 2}]], Union@@#==Range[n]&]], {n, 0, 4}] (* Gus Wiseman, Feb 14 2024 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
Formula and more terms from Vladeta Jovovic, Mar 27 2001
STATUS
approved