login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A001521 a(1) = 1; thereafter a(n+1) = floor(sqrt(2*a(n)*(a(n)+1))).
(Formerly M0569 N0206)
10
1, 2, 3, 4, 6, 9, 13, 19, 27, 38, 54, 77, 109, 154, 218, 309, 437, 618, 874, 1236, 1748, 2472, 3496, 4944, 6992, 9888, 13984, 19777, 27969, 39554, 55938, 79108, 111876, 158217, 223753, 316435, 447507, 632871, 895015, 1265743, 1790031, 2531486, 3580062, 5062972 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Graham and Pollak give an elementary proof of the following result: For given m, define a_n by a_1 = m and a_{n+1} = [ sqrt{2*a_n*(a_n + 1)} ], n >= 1. Then a_n = [ tau_m (2^{(n-1)/2} + 2^{(n-2)/2}) ] where tau_m is the m-th smallest element of {1, 2, 3, ... } union { sqrt{2}, 2sqrt{2}, 3sqrt{2}, ... }. For m=1 it follows as a curious corollary that a_{2n+1} - 2a_{2n-1} is exactly the n-th bit in the binary expansion of sqrt{2} (A004539).

a(n) is also the number of the circle curvature (rounded down) inscribing in 45-45-90 triangle arranged as spiral form. See illustration in links. - Kival Ngaokrajang, Aug 21 2013

REFERENCES

R. L. Graham, D. E. Knuth and O. Pataschnic, Concrete Mathematics, Addison-Wesley, Reading (1994) 2nd Ed., Ex. 3.46.

Hwang, F. K., and Shen Lin. "An analysis of Ford and Johnson’s sorting algorithm." In Proc. Third Annual Princeton Conf. on Inform. Sci. and Systems, pp. 292-296. 1969.

N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

Harvey P. Dale and T. D. Noe, Table of n, a(n) for n = 1..5000 [The first 200 terms were computed by T. D. Noe]

R. L. Graham and H. O. Pollak, Note on a nonlinear recurrence related to sqrt(2), Mathematics Magazine, Volume 43, Pages 143-145, 1970. Zbl 201.04705.

R. L. Graham and H. O. Pollak, Note on a nonlinear recurrence related to sqrt(2) (annotated and scanned copy)

R. K. Guy, The strong law of small numbers. Amer. Math. Monthly 95 (1988), no. 8, 697-712.

R. K. Guy, The strong law of small numbers. Amer. Math. Monthly 95 (1988), no. 8, 697-712. [Annotated scanned copy]

Kival Ngaokrajang, Illustration for some initial terms

S. Rabinowitz and P. Gilbert, A nonlinear recurrence yielding binary digits, Math. Mag. 64 (1991), no. 3, 168-171.

Th. Stoll, On Families of Nonlinear Recurrences Related to Digits, Journal of Integer Sequences, Vol. 8 (2005), Article 05.3.2.

FORMULA

a(n) = floor( sqrt(2)^(n-1) ) + floor( sqrt(2)^(n-2) ), n>1. - Ralf Stephan, Sep 18 2004

MAPLE

Digits:=200;

f:=proc(n) option remember;

if n=1 then 1 else floor(sqrt(2*f(n-1)*(f(n-1)+1))); fi; end;

[seq(f(n), n=1..200)];

MATHEMATICA

With[{c=Sqrt[2]}, Table[Floor[c^(n-1)+c^(n-2)], {n, 1, 50}]] (* Harvey P. Dale, May 11 2011 *)

NestList[Floor[Sqrt[2#(#+1)]]&, 1, 50] (* Harvey P. Dale, Aug 28 2013 *)

PROG

(Haskell)

a001521 n = a001521_list !! (n-1)

a001521_list = 1 : (map a000196 $ zipWith (*)

                    (map (* 2) a001521_list) (map (+ 1) a001521_list))

-- Reinhard Zumkeller, Dec 16 2013

(MAGMA) [Floor(Sqrt(2)^(n-1)+Sqrt(2)^(n-2)): n in [1..45]]; // Vincenzo Librandi, May 24 2015

(Sage) [floor(sqrt(2)^(n-1))+ floor(sqrt(2)^(n-2)) for n in (1..50)] # Bruno Berselli, May 25 2015

(PARI) a(n)=if(n>1, sqrtint(2^(n-1)) + sqrtint(2^(n-2)), 1) \\ Charles R Greathouse IV, Nov 27 2016

CROSSREFS

Cf. A000196.

First, second, and third differences give A017911, A190660, A241576.

Sequence in context: A061481 A017824 A094054 * A003143 A221718 A251571

Adjacent sequences:  A001518 A001519 A001520 * A001522 A001523 A001524

KEYWORD

nonn,nice,easy

AUTHOR

N. J. A. Sloane.

EXTENSIONS

Additional comments from Torsten Sillke, Apr 06 2001

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 21 19:08 EST 2019. Contains 319350 sequences. (Running on oeis4.)