OFFSET
1,1
COMMENTS
Bailey, Borwein, Crandall, & Pomerance prove a general result that the first n terms contain >> sqrt(n) 1's. Vandehey improves this to sqrt(2*n)(1 + o(1)). - Charles R Greathouse IV, Nov 07 2017
LINKS
T. D. Noe, Table of n, a(n) for n = 1..1000
B. Adamczewski and N. Rampersad, On patterns occurring in binary algebraic numbers, Proc. Amer. Math. Soc. 136 (2008), 3105-3109.
David H. Bailey, Jonathan M. Borwein, Richard E. Crandall, and Carl Pomerance, On the binary expansions of algebraic numbers, J. Théor. Nombres Bordeaux, 16 (2004), 487-518.
R. L. Graham and H. O. Pollak, Note on a nonlinear recurrence related to sqrt(2), Mathematics Magazine, Volume 43, Pages 143-145, 1970. Zbl 201.04705.
R. K. Guy, The strong law of small numbers. Amer. Math. Monthly 95 (1988), no. 8, 697-712. [Annotated scanned copy]
Richard Isaac, On the simple normality to base 2 of the square root of s, for s not a perfect square., arXiv:math/0512404 [math.NT], 2005-2006.
Jason Kimberley, Index of expansions of sqrt(d) in base b
Thomas Stoll, On families of nonlinear recurrences related to digits, Journal of Integer Sequences 8 (2005), 05.3.2.
Thomas Stoll, On a problem of Erdős and Graham concerning digits, Acta Arithmetica 125 (2006), pp. 89-100.
Thomas Stoll, A fancy way to obtain the binary digits of 759250125 sqrt{2}, (2009), Amer. Math. Monthly, 117 (2010), 611-617.
Joseph Vandehey, On the binary digits of sqrt(2), arXiv:1711.01722 [math.NT], 2017.
Eric Weisstein's World of Mathematics, Wolfram's Iteration
Eric Weisstein's World of Mathematics, Pythagoras's Constant
FORMULA
a(k) = floor(Sum_{n>=1} A005875(n)/exp(Pi*n/(2^((2/3)*k+(1/3))))) mod 2. Will give the k-th binary digit of sqrt(2). A005875 : number of ways to write n as sum of 3 squares. - Simon Plouffe, Dec 30 2023
EXAMPLE
1.0110101000001001111001...
MATHEMATICA
N[Sqrt[2], 200]; RealDigits[%, 2]
RealDigits[Sqrt[2], 2, 120][[1]] (* Harvey P. Dale, Aug 03 2024 *)
PROG
(bc) obase=2 scale=200 sqrt(2)
(Haskell)
a004539 n = a004539_list !! (n-1)
a004539_list = w 2 0 where
w x r = bit : w (4 * (x - (4 * r + bit) * bit)) (2 * r + bit)
where bit = head (dropWhile (\b -> (4 * r + b) * b < x) [0..]) - 1
-- Reinhard Zumkeller, Dec 16 2013
(PARI) binary(sqrt(2)) \\ Michel Marcus, Nov 06 2017
(PARI) a(n) = floor(quadgen(8)<<(n-1))%2; \\ Chittaranjan Pardeshi, Sep 09 2024
CROSSREFS
KEYWORD
AUTHOR
STATUS
approved