login
This site is supported by donations to The OEIS Foundation.

 

Logo

Many excellent designs for a new banner were submitted. We will use the best of them in rotation.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A001298 Stirling numbers of the second kind S(n+4,n).
(Formerly M5222 N2272)
8
0, 1, 31, 301, 1701, 6951, 22827, 63987, 159027, 359502, 752752, 1479478, 2757118, 4910178, 8408778, 13916778, 22350954, 34952799, 53374629, 79781779, 116972779, 168519505, 238929405, 333832005, 460192005, 626551380, 843303006, 1122998436, 1480692556 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

REFERENCES

M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 835.

F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 223.

N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

T. D. Noe, Table of n, a(n) for n = 0..1000

M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].

M. Griffiths, Remodified Bessel Functions via Coincidences and Near Coincidences, Journal of Integer Sequences, Vol. 14 (2011), Article 11.7.1.

Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992.

Simon Plouffe, 1031 Generating Functions and Conjectures, Université du Québec à Montréal, 1992.

Eric Weisstein's World of Mathematics, Stirling numbers of the 2nd kind.

FORMULA

G.f. : x(1+22x+58x^2+24x^3)/(1-x)^9 - Paul Barry, Aug 05 2004

a(n) = Stirling2(n+4, n) = Sum(Sum(Sum(Sum(i*j*k*l, i = 1 .. j), j = 1 .. k), k = 1 .. l), l = 1 .. n) = (n+4)*(n+3)*(n+2)*(n+1)*n *(15*n^3+30*n^2+5*n-2)/5760 = (15*n^3+30*n^2+5*n-2) *binomial(n+4,5)/48. - Vladeta Jovovic, Jan 31 2005

E.g.f. with offset -3: exp(x)*(1*(x^4)/4! + 26*(x^5)/5! + 130*(x^6)/6! + 210*(x^7)/7! +105*(x^8)/8!). For the coefficients [1, 26, 130, 210, 105] see triangle A112493. E.g.f.: x*exp(x)*(15*x^7+600*x^6+8600*x^5+55248*x^4+162960*x^3+202560*x^2+83520*x+5760)/5760. Above given e.g.f. differentiated three times.

O.g.f. is D^4(x/(1-x)), where D is the operator x/(1-x)*d/dx. - Peter Bala, Jul 02 2012

MAPLE

A001298:=-(1+22*z+58*z**2+24*z**3)/(z-1)**9; [Simon Plouffe in his 1992 dissertation, without the leading 0.]

MATHEMATICA

Table[StirlingS2[n+4, n], {n, 0, 100}] [From Vladimir Joseph Stephan Orlovsky, Sep 27 2008]

PROG

(Sage) [stirling_number2(n+4, n) for n in xrange(0, 24)] # [From Zerinvary Lajos, May 16 2009]

CROSSREFS

Cf. A008277, A094262, A001296, A001297. A008517.

Sequence in context: A156094 A221430 A115151 * A027841 A221853 A000500

Adjacent sequences:  A001295 A001296 A001297 * A001299 A001300 A001301

KEYWORD

nonn

AUTHOR

N. J. A. Sloane.

EXTENSIONS

Name edited and initial zero added by Nathaniel Johnston, Apr 30 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified April 21 11:47 EDT 2014. Contains 240824 sequences.