login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A000864 Deceptive nonprimes: composite numbers n such that n divides the repunit R_{n-1}. 3
91, 259, 451, 481, 703, 1729, 2821, 2981, 3367, 4141, 4187, 5461, 6533, 6541, 6601, 7471, 7777, 8149, 8401, 8911, 10001, 11111, 12403, 13981, 14701, 14911, 15211, 15841, 19201, 21931, 22321, 24013, 24661, 27613, 29341, 34133 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Francis and Ray call these numbers "deceptive primes".

Pseudoprimes to base 10, A005939, indivisible by 3. If n is in the sequence, then (10^n-1)/9 is in the sequence; by Steuerwald's theorem, see A005935. - Thomas Ordowski, Apr 10 2016

41041 is the first term that has four prime divisors. - Altug Alkan, Apr 10 2016

LINKS

Charles R Greathouse IV, Table of n, a(n) for n = 1..10000

R. Francis and T. Ray, The deceptive primes to 2.10^7, Missouri J. Math. Sci. 12 (2000), no. 3, 145-158.

MAPLE

select(t -> not isprime(t) and (10&^(t-1) - 1) mod (9*t) = 0, [seq(t, t=3..10^5, 2)]); # Robert Israel, Apr 10 2016

PROG

(PARI) p=5; forprime(q=7, 1e5, forstep(n=p+2, q-2, 2, if(n%5 && Mod(10, 9*n)^(n-1)==1, print1(n", "))); p=q) \\ Charles R Greathouse IV, Jul 31 2011

CROSSREFS

Cf. A002275, A005939.

Sequence in context: A225909 A051973 A290812 * A224460 A020441 A209255

Adjacent sequences:  A000861 A000862 A000863 * A000865 A000866 A000867

KEYWORD

nonn

AUTHOR

Tim Ray (C268SCM(AT)SEMOVM.SEMO.EDU)

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 24 19:14 EDT 2020. Contains 334580 sequences. (Running on oeis4.)