login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A005939 Pseudoprimes to base 10.
(Formerly M4612)
9
9, 33, 91, 99, 259, 451, 481, 561, 657, 703, 909, 1233, 1729, 2409, 2821, 2981, 3333, 3367, 4141, 4187, 4521, 5461, 6533, 6541, 6601, 7107, 7471, 7777, 8149, 8401, 8911, 10001, 11111, 11169, 11649, 12403, 12801, 13833, 13981, 14701, 14817, 14911, 15211 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

This sequence is a subsequence of A121014 & A121912. In fact the terms are composite terms n of these sequences such that gcd(n,10)=1. Theorem: If both numbers q & 2q-1 are primes(q is in the sequence A005382) and n=q*(2q-1) then 10^(n-1) == 1 (mod n) (n is in the sequence A005939) iff mod(q, 20) is in the set {1, 7, 19}. 91,703,12403,38503,79003,188191,269011,... are such terms. - Farideh Firoozbakht, Sep 15 2006

Composite numbers n such that 10^(n-1) == 1 (mod n). [From Michel Lagneau, Feb 18 2012]

REFERENCES

R. K. Guy, Unsolved Problems in Number Theory, A12.

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

T. D. Noe, Table of n, a(n) for n = 1..1000

Index entries for sequences related to pseudoprimes

MATHEMATICA

Select[Range[15300], ! PrimeQ[ # ] && PowerMod[10, (# - 1), # ] == 1 &] (* Farideh Firoozbakht, Sep 15 2006 *)

CROSSREFS

Cf. A001567 (pseudoprimes to base 2), A005382, A121014, A121912.

Sequence in context: A146171 A146188 A020228 * A020326 A201024 A228170

Adjacent sequences:  A005936 A005937 A005938 * A005940 A005941 A005942

KEYWORD

nonn

AUTHOR

N. J. A. Sloane.

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified September 26 01:25 EDT 2017. Contains 292500 sequences.