login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A000795
Salié numbers: expansion of cosh x / cos x = Sum_{n >= 0} a(n)*x^(2n)/(2n)!.
(Formerly M2044 N0810)
19
1, 2, 12, 152, 3472, 126752, 6781632, 500231552, 48656756992, 6034272215552, 929327412759552, 174008703107274752, 38928735228629389312, 10255194381004799025152, 3142142941901073853366272, 1107912434323301224813002752, 445427836895850552387642130432
OFFSET
0,2
COMMENTS
Named after the German mathematician Hans Salié (1902-1978). - Amiram Eldar, Jun 10 2021
REFERENCES
Louis Comtet, Advanced Combinatorics, Reidel, 1974, p. 86, Problem 32.
Hans Salié, Arithmetische Eigenschaften der Koeffizienten einer speziellen Hurwitzschen Potenzreihe, Wiss. Z. Karl-Marx-Univ. Leipzig Math.-Natur. Reihe 12 (1963), pp. 617-618.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
L. Carlitz, The coefficients of cosh x/ cos x, Monatshefte für Mathematik, Vol. 69, No. 2 (1965), pp. 129-135.
Timothy Chow and Richard Stanley, Salié permutations and fair permutations, MathOverflow, 2012.
Marc Deléglise and Jean-Louis Nicolas, On the Largest Product of Primes with Bounded Sum, Journal of Integer Sequences, Vol. 18 (2015), Article 15.2.8.
J. M. Gandhi, The coefficients of cosh x/ cos x and a note on Carlitz's coefficients of sinh x / sin x, Math. Magazine, Vol. 31, No. 4 (1958), pp. 185-191..
J. M. Gandhi and V. S. Taneja, The coefficients of cosh x / cos x, Fib. Quart., Vol. 10, No. 4 (1972), pp. 349-353.
M. S. Krick, On the coefficients of cosh x / cos x, Math. Mag., Vol. 34, No. 1 (1960), pp. 37-40.
FORMULA
a(n) = Sum_{k=0..n} binomial(2n, 2k)*A000364(n-k). - Philippe Deléham, Dec 16 2003
a(n) = Sum_{k>=0} (-1)^(n+k)*2^(2n-k)*A065547(n, k). - Philippe Deléham, Feb 26 2004
a(n) = Sum_{k>=0} A086646(n, k). - Philippe Deléham, Feb 26 2004
G.f.: 1 / (1 - (1^2+1)*x / (1 - 2^2*x / (1 - (3^2+1)*x / (1 - 4^2*x / (1 - (5^2+1)*x / (1 - 6^2*x / ...)))))). - Michael Somos, May 12 2012
G.f.: Q(0)/(1-2*x), where Q(k) = 1 - 8*x^2*(2*k^2+2*k+1)*(k+1)^2/( 8*x^2*(2*k^2+2*k+1)*(k+1)^2 - (1 - 8*x*k^2 - 4*x*k -2*x)*(1 - 8*x*k^2 - 20*x*k -14*x)/Q(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Oct 22 2013
a(n) ~ (2*n)! * 2^(2*n+2) * cosh(Pi/2) / Pi^(2*n+1). - Vaclav Kotesovec, Mar 08 2014
a(n) = 1 - Sum_{k=1..n} (-1)^k * binomial(2*n,2*k) * a(n-k). - Ilya Gutkovskiy, Mar 09 2022
EXAMPLE
cosh x / cos x = Sum_{n>=0} a(n)*x^(2n)/(2n)! = 1 + x^2 + (1/2)*x^4 + (19/90)*x^6 + (31/360)*x^8 + (3961/113400)*x^10 + ...
G.f. = 1 + 2*x + 12*x^2 + 252*x^3 + 3472*x^4 + 126752*x^5 + 6781632*x^6 + ...
MAPLE
A000795 := proc(n)
(2*n)!*coeftayl( cosh(x)/cos(x), x=0, 2*n) ;
end proc: # R. J. Mathar, Oct 20 2011
MATHEMATICA
max = 16; se = Series[ Cosh[x] / Cos[x], {x, 0, 2*max} ]; a[n_] := SeriesCoefficient[ se, 2*n ]*(2*n)!; Table[ a[n], {n, 0, max} ] (* Jean-François Alcover, Apr 02 2012 *)
With[{nn=40}, Take[CoefficientList[Series[Cosh[x]/Cos[x], {x, 0, nn}], x] Range[ 0, nn]!, {1, -1, 2}]] (* Harvey P. Dale, May 11 2012 *)
a[ n_] := If[ n < 0, 0, With[ {m = 2 n}, m! SeriesCoefficient[ Cosh[ x] / Cos[ x], {x, 0, m}]]]; (* Michael Somos, Aug 15 2015 *)
PROG
(Sage) # Generalized algorithm of L. Seidel (1877)
def A000795_list(n) :
R = []; A = {-1:0, 0:0}
k = 0; e = 1
for i in range(n) :
Am = 1 if e == 1 else 0
A[k + e] = 0
e = -e
for j in (0..i) :
Am += A[k]
A[k] = Am
k += e
if e == -1 : R.append(A[-i//2])
return R
A000795_list(10) # Peter Luschny, Jun 02 2012
CROSSREFS
A005647(n) = a(n)/2^n.
Sequence in context: A229558 A362694 A208582 * A085628 A177777 A053549
KEYWORD
nonn,easy,nice
STATUS
approved