login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A000559
Generalized Stirling numbers of second kind.
(Formerly M4858 N2076)
5
1, 12, 110, 945, 8092, 70756, 638423, 5971350, 57996774, 585092607, 6128147610, 66579524648, 749542556193, 8733648533696, 105203108066962, 1308549777461505, 16787682400875456, 221901108871482760, 3018891886411332135, 42230736603244134242
OFFSET
3,2
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
P. Blasiak, K. A. Penson and A. I. Solomon, The general boson normal ordering problem, arXiv:quant-ph/0402027, 2004.
FORMULA
E.g.f.: (1/3!)*(exp(exp(x)-1)-1)^3. - Vladeta Jovovic, Sep 28 2003
a(n) = Sum_{k=0..n} Stirling2(n,k)*Stirling2(k,3).
MATHEMATICA
nn = 23; t = Range[0, nn]! CoefficientList[Series[1/6*(Exp[Exp[x] - 1] - 1)^3, {x, 0, nn}], x]; Drop[t, 3] (* T. D. Noe, Aug 10 2012 *)
CROSSREFS
Sequence in context: A177071 A081183 A069294 * A037714 A037616 A048532
KEYWORD
nonn,easy
EXTENSIONS
More terms from David W. Wilson, Jan 13 2000
STATUS
approved