login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A000449
Rencontres numbers: number of permutations of [n] with exactly 3 fixed points.
(Formerly M4700 N2009)
10
1, 0, 10, 40, 315, 2464, 22260, 222480, 2447445, 29369120, 381798846, 5345183480, 80177752655, 1282844041920, 21808348713320, 392550276838944, 7458455259940905, 149169105198816960, 3132551209175157490, 68916126601853463240
OFFSET
3,3
REFERENCES
J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 65.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
FORMULA
a(n) = Sum_{j=2..n-3} (-1)^j*n!/(3!*j!) = A008290(n,3).
For n >= 3 a(n) = C(n, 3) * A000166(n-3) = 1/6 * n! * Sum_{k=0..n-3} (-1)^k/k!. - Dan Fux (dan.fux(AT)OpenGaia.com or danfux(AT)OpenGaia.com), Apr 14 2001
E.g.f.: 1/(exp(x)*(1-x))*(x^3)/6. - Wenjin Woan, Nov 20 2008
E.g.f.: x^3*exp(-x)/(3!*(1-x)). - Geoffrey Critzer, Nov 03 2012
a(n) ~ n! * exp(-1)/6. - Vaclav Kotesovec, Mar 17 2014
a(n) = n*a(n-1) - (-1^n)*n*(n-1)*(n-2)/6, a(n) = 0 for n= 0, 1, 2. - Chai Wah Wu, Sep 23 2014
O.g.f.: (1/6)*Sum_{k>=3} k!*x^k/(1 + x)^(k+1). - Ilya Gutkovskiy, Apr 13 2017
D-finite with recurrence (-n+3)*a(n) +n*(n-4)*a(n-1) +n*(n-1)*a(n-2)=0. - R. J. Mathar, Jul 06 2023
MAPLE
# with k fixed-points:
G:=exp(-z)*z^k/((1-z)*k!: Gser:=series(G, z, 21):
for n from k to 20 do a(n)=n!*coeff(Gser, z, n): end do: # Paul Weisenhorn, May 30 2010
MATHEMATICA
Table[Subfactorial[n - 3]*Binomial[n, 3], {n, 3, 22}] (* Zerinvary Lajos, Jul 10 2009 *)
PROG
(PARI) my(x='x+O('x^66)); Vec( serlaplace(exp(-x)/(1-x)*(x^3/3!)) ) \\ Joerg Arndt, Feb 19 2014
(Python)
A000449_list, m, x = [], 1, 0
for n in range(3, 21):
x, m = x*n + m*(n*(n-1)*(n-2)//6), -m
A000449_list.append(x) # Chai Wah Wu, Sep 23 2014
CROSSREFS
Cf. A008290.
A diagonal of A008291.
Cf. A170942.
Sequence in context: A060580 A118266 A054885 * A027274 A253674 A016082
KEYWORD
nonn,easy
STATUS
approved