login
A253674
Indices of centered octagonal numbers (A016754) which are also centered triangular numbers (A005448).
3
1, 10, 40, 931, 3871, 91180, 379270, 8934661, 37164541, 875505550, 3641745700, 85790609191, 356853914011, 8406604195120, 34968041827330, 823761420512521, 3426511245164281, 80720212606031890, 335763133984272160, 7909757073970612651, 32901360619213507351
OFFSET
1,2
COMMENTS
Also positive integers y in the solutions to 3*x^2 - 8*y^2 - 3*x + 8*y = 0, the corresponding values of x being A253673.
FORMULA
a(n) = a(n-1)+98*a(n-2)-98*a(n-3)-a(n-4)+a(n-5).
G.f.: -x*(x^2-5*x+1)*(x^2+14*x+1) / ((x-1)*(x^2-10*x+1)*(x^2+10*x+1)).
EXAMPLE
10 is in the sequence because the 10th centered octagonal number is 361, which is also the 16th centered triangular number.
MATHEMATICA
LinearRecurrence[{1, 98, -98, -1, 1}, {1, 10, 40, 931, 3871}, 30] (* Harvey P. Dale, Oct 01 2015 *)
PROG
(PARI) Vec(-x*(x^2-5*x+1)*(x^2+14*x+1)/((x-1)*(x^2-10*x+1)*(x^2+10*x+1)) + O(x^100))
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Colin Barker, Jan 08 2015
STATUS
approved