login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A000211
a(n) = a(n-1) + a(n-2) - 2, a(0) = 4, a(1) = 3.
(Formerly M2396 N0953)
28
4, 3, 5, 6, 9, 13, 20, 31, 49, 78, 125, 201, 324, 523, 845, 1366, 2209, 3573, 5780, 9351, 15129, 24478, 39605, 64081, 103684, 167763, 271445, 439206, 710649, 1149853, 1860500, 3010351, 4870849, 7881198
OFFSET
0,1
COMMENTS
Let I=I_n be the n X n identity matrix and P=P_n be the incidence matrix of the cycle (1,2,3,...,n). Then, for n>=3, a(n) is the number of (0,1) n X n matrices A<=P^(-1)+I+P with exactly two 1's in every row and column. - Vladimir Shevelev, Apr 11 2010
REFERENCES
J. Riordan, Discordant permutations, Scripta Math., 20 (1954), 14-23.
J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 233.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
R. P. Stanley, Enumerative Combinatorics I, Example 4.7.15, p. 252.
LINKS
N. Metropolis, M. L. Stein, and P. R. Stein, Permanents of cyclic (0,1) matrices, J. Combin. Theory, 7 (1969), 291-321.
H. Minc, Permanents of (0,1)-circulants, Canad. Math. Bull., 7 (1964), 253-263.
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
J. Riordan, Discordant permutations, Scripta Math., 20 (1954), 14-23. [Annotated scanned copy]
N. J. A. Sloane, Annotated copy of Riordan's Three-Ply Staircase paper (unpublished memorandum, Bell Telephone Laboratories, Murray Hill, NJ, Oct 1963).
K. Yamamoto, Structure polynomial of Latin rectangles and its application to a combinatorial problem, Memoirs of the Faculty of Science, Kyusyu University, Series A, 10 (1956), 1-13.
FORMULA
G.f.: 2/(1-x)+(2-x)/(1-x-x^2) = (4-5*x-x^2) / ((x-1)*(x^2+x-1)).
a(n) = Lucas number A000032(n) + 2.
Binomial transform of [4, -1, 3, -4, 7, -11, 18, ...], i.e., the series continues as a signed version of the Lucas series, A000204. - Gary W. Adamson, Nov 08 2007
a(n) = F(n-1) + F(n+1) + 2, where F(n) is the n-th Fibonacci number. - Zerinvary Lajos, Feb 01 2008; corrected by Michel Marcus, Jan 05 2021
a(n) = per(I+P+P^2) = per(P^(-1)+I+P). - Vladimir Shevelev, Apr 11 2010
E.g.f.: 2*exp(x/2)*(exp(x/2) + cosh(sqrt(5)*x/2)). - Ilya Gutkovskiy, Feb 01 2017
MAPLE
A000211:=-(1+z)*(4*z-3)/(z-1)/(z**2+z-1); # conjectured by Simon Plouffe in his 1992 dissertation; gives sequence except for the leading 4
with(combinat): seq(fibonacci(n-1)+fibonacci(n+1)+2, n=0..32); # Zerinvary Lajos, Feb 01 2008
a:= n-> (Matrix([[4, 1, 5]]). Matrix(3, (i, j)-> if (i=j-1) then 1 elif j=1 then [2, 0, -1][i] else 0 fi)^n)[1, 1]: seq(a(n), n=0..33); # Alois P. Heinz, Aug 01 2008
MATHEMATICA
Transpose[NestList[{Last[#], First[#]+Last[#]-2}&, {4, 3}, 40]] [[1]] (* Harvey P. Dale, Mar 22 2011 *)
Table[LucasL[n] + 2, {n, 0, 40}] (* Jean-François Alcover, Jul 30 2015 *)
LinearRecurrence[{2, 0, -1}, {4, 3, 5}, 40] (* Jean-François Alcover, Mar 15 2020 *)
PROG
(Haskell)
a000211 n = a000211_list !! n
a000211_list = 4 : 3 : map (subtract 2)
(zipWith (+) a000211_list (tail a000211_list))
-- Reinhard Zumkeller, Feb 29 2012
(PARI) a(n)=([0, 1, 0; 0, 0, 1; -1, 0, 2]^n*[4; 3; 5])[1, 1] \\ Charles R Greathouse IV, Jan 05 2016
CROSSREFS
Cf. A000204.
Sequence in context: A023829 A335583 A328109 * A059902 A304225 A068982
KEYWORD
nonn,easy,nice
STATUS
approved