login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A068982 Limit of the product of a modified Zeta function. 1
4, 3, 5, 7, 5, 7, 0, 7, 6, 7, 7, 2, 6, 4, 5, 5, 9, 3, 7, 3, 7, 6, 2, 2, 9, 7, 0, 1, 2, 0, 9, 4, 1, 8, 6, 3, 4, 9, 6, 8, 6, 4, 1, 7, 4, 9, 2, 4, 3, 6, 8, 0, 3, 8, 1, 7, 5, 4, 6, 0, 9, 8, 9, 0, 9, 2, 3, 0, 0, 2, 3, 6, 0, 1, 6, 1, 0, 3, 0, 5, 3, 1, 8, 8, 0, 4, 3, 9, 7, 9, 5, 9, 7, 7, 2, 3, 4, 0, 6, 5, 3, 7, 6, 9 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

The "modified Zeta function" Zetam(n) = sum(mu(k)/k^n) may be helpful when searching for a closed form for Apery's constant.

LINKS

Table of n, a(n) for n=0..103.

FORMULA

Product(Sum(mu(k)/k^n)), k=1..infinity, n=2..infinity

Equals 1/A021002. - R. J. Mathar, Jan 31 2009

EXAMPLE

0.43575707...

MAPLE

with(numtheory); evalf(Product(Sum('mobius(k)/k^n', 'k'=1..infinity), n=2..infinity), 40); Note: For practical reasons you should change "infinity" to some finite value.

evalf(product(1/Zeta(n), n=2..infinity), 120); # Vaclav Kotesovec, Oct 22 2014

MATHEMATICA

digits = 104; 1/NProduct[ Zeta[n], {n, 2, Infinity}, WorkingPrecision -> digits+10, NProductFactors -> 1000] // RealDigits[#, 10, digits]& // First (* Jean-Fran├žois Alcover, Feb 15 2013 *)

CROSSREFS

Cf. A021002, A002117.

Sequence in context: A023829 A000211 A059902 * A171021 A035427 A257120

Adjacent sequences:  A068979 A068980 A068981 * A068983 A068984 A068985

KEYWORD

cons,nonn

AUTHOR

Andre Neumann Kauffman (andrekff(AT)hotmail.com), Apr 01 2002

EXTENSIONS

Corrected and extended by R. J. Mathar, Jan 31 2009

Example corrected by R. J. Mathar, Jul 23 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified November 21 17:44 EST 2017. Contains 295004 sequences.