login
A000167
Nearest integer to modified Bessel function K_n(2).
(Formerly M1938 N0767)
2
0, 0, 0, 1, 2, 9, 49, 306, 2188, 17810, 162482, 1642635, 18231462, 220420179, 2883693795, 40592133316, 611765693528, 9828843229764, 167702100599524, 3028466654021205, 57708568527002410, 1157199837194069405
OFFSET
0,5
REFERENCES
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 429.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
FORMULA
b(n) = (n-1)*b(n-1) + b(n-2) with b(n) = K_n(2). - Christian Krause, Dec 08 2023
MAPLE
Digits := 60: A000167 := proc(n) round( evalf ( BesselK( n, 2 ) )); end;
MATHEMATICA
Table[BesselK[n, 2] // Round, {n, 0, 21}] (* Jean-François Alcover, Mar 12 2014 *)
PROG
(PARI) a(n)=round(besselk(n, 2)) \\ Charles R Greathouse IV, Jul 29 2016
CROSSREFS
Sequence in context: A224140 A360103 A370345 * A345750 A241785 A361447
KEYWORD
nonn
EXTENSIONS
More terms from Herman P. Robinson
STATUS
approved