login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A000159 Coefficients of ménage hit polynomials.
(Formerly M1834 N0728)
4
2, 8, 20, 152, 994, 7888, 70152, 695760, 7603266, 90758872, 1174753372, 16386899368, 245046377410, 3910358788256, 66323124297872, 1191406991067168, 22596344660865282, 451208920617687720, 9461897733571886372, 207894669895136763704, 4776019866458134139042 (list; graph; refs; listen; history; text; internal format)
OFFSET

3,1

REFERENCES

J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 197.

N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

Sean A. Irvine, Table of n, a(n) for n = 3..250

Belgacem Bouras, A New Characterization of Catalan Numbers Related to Hankel Transforms and Fibonacci Numbers, Journal of Integer Sequences, 16 (2013), #13.3.3.

M. Dougherty, C. French, B. Saderholm, W. Qian, Hankel Transforms of Linear Combinations of Catalan Numbers, J. Int. Seq. 14 (2011) # 11.5.1.

FORMULA

Conjecture: 2*(-252307*n + 1041077)*a(n) + (504614*n^2 - 3362985*n + 5118150)*a(n-1) + (1280831*n^2 - 7397886*n + 6461565)*a(n-2) + (746598*n^2 - 2913543*n - 1336090)*a(n-3) + (-405481*n^2 + 6175011*n - 15469320)*a(n-4) + (-375862*n^2 + 4098537*n - 8846430)*a(n-5) + 2*(-187931*n + 560630)*a(n-6) = 0. - R. J. Mathar, Nov 02 2015

a(n) = round(2*n*(4*exp(-2)*((n+3/2)*BesselK(n-1,2) - (n-9/2)*BesselK(n-2,2)) + (-1)^n)/3) for n > 11 assuming the recurrence is correct. - Mark van Hoeij, Jun 09 2019

Conjecture: a(n) + 2*a(n+p) + a(n+2*p) is divisible by p for any prime p except 3. - Mark van Hoeij, Jun 10 2019

CROSSREFS

A diagonal of A058087.

Cf. A000179, A000425.

Sequence in context: A005559 A001471 A162585 * A090612 A212981 A051744

Adjacent sequences:  A000156 A000157 A000158 * A000160 A000161 A000162

KEYWORD

nonn

AUTHOR

N. J. A. Sloane, Simon Plouffe

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 5 05:10 EDT 2022. Contains 355087 sequences. (Running on oeis4.)