This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A162585 G.f.: A(x) = exp( Sum_{n>=1} C(2n,n)*A006519(n) * x^n/n ), where A006519(n) = highest power of 2 dividing n. 1
 1, 2, 8, 20, 114, 288, 1156, 3256, 23464, 59716, 243212, 699216, 3659988, 10265800, 42353168, 128163440, 1127515970, 2858004752, 11768578868, 34294832344, 180335471424, 513911386232, 2137413847256, 6572758142016, 41948816796852 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Compare g.f. to the g.f. of the Catalan numbers: exp( Sum_{n>=1} C(2n,n)*x^n/n ), where C(2n,n) form the central binomial coefficients (A000984). LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 EXAMPLE G.f.: A(x) = 1 + 2*x + 6*x^2 + 10*x^3 + 146*x^4 + 282*x^5 + 826*x^6 + ... log(A(x)) = 2*x + 12*x^2/2 + 20*x^3/3 + 280*x^4/4 + 252*x^5/5 + 1848*x^6/6 + ... + C(2n,n)*A006519(n)*x^n/n + ... MATHEMATICA nmax = 150; a[n_]:= SeriesCoefficient[Series[Exp[Sum[2^(IntegerExponent[k, 2])*Binomial[2*k, k]*q^k/k, {k, 1, nmax}]], {q, 0, nmax}], n]; Table[a[n], {n, 0, 50}]  (* G. C. Greubel, Jul 04 2018 *) PROG (PARI) {a(n)=local(L=sum(m=1, n, 2^valuation(m, 2)*binomial(2*m, m)*x^m/m)+x*O(x^n)); polcoeff(exp(L), n)} CROSSREFS Cf. A000108, A000984, A006519, A000123. Sequence in context: A091004 A005559 A001471 * A000159 A090612 A212981 Adjacent sequences:  A162582 A162583 A162584 * A162586 A162587 A162588 KEYWORD nonn AUTHOR Paul D. Hanna, Jul 06 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 16 18:53 EST 2019. Contains 320165 sequences. (Running on oeis4.)