This site is supported by donations to The OEIS Foundation.
q ¯ d q ¯ describes a q ¯ d q describes d q d q ¯ describes b q d q describes c {\displaystyle {\begin{matrix}{\overline {q}}~{\overline {\mathrm {d} q}}~{\text{describes}}~a\\[8pt]{\overline {q}}~\mathrm {d} q~{\text{describes}}~d\\[8pt]q~{\overline {\mathrm {d} q}}~{\text{describes}}~b\\[8pt]q~\mathrm {d} q~{\text{describes}}~c\end{matrix}}}
From q ¯ and d q ¯ infer q ¯ next. From q ¯ and d q infer q next. From q and d q ¯ infer q next. From q and d q infer q ¯ next. {\displaystyle {\begin{matrix}{\text{From}}&{\overline {q}}&{\text{and}}&{\overline {\mathrm {d} q}}&{\text{infer}}&{\overline {q}}&{\text{next.}}\\[8pt]{\text{From}}&{\overline {q}}&{\text{and}}&\mathrm {d} q&{\text{infer}}&q&{\text{next.}}\\[8pt]{\text{From}}&q&{\text{and}}&{\overline {\mathrm {d} q}}&{\text{infer}}&q&{\text{next.}}\\[8pt]{\text{From}}&q&{\text{and}}&\mathrm {d} q&{\text{infer}}&{\overline {q}}&{\text{next.}}\end{matrix}}}
x ′ x ~ ¬ x {\displaystyle {\begin{matrix}x'\\{\tilde {x}}\\\lnot x\end{matrix}}}
x implies y I f x then y {\displaystyle {\begin{matrix}x~{\text{implies}}~y\\\mathrm {If} ~x~{\text{then}}~y\end{matrix}}}
x not equal to y x exclusive or y {\displaystyle {\begin{matrix}x~{\text{not equal to}}~y\\x~{\text{exclusive or}}~y\end{matrix}}}
x ≠ y x + y {\displaystyle {\begin{matrix}x\neq y\\x+y\end{matrix}}}
x is equal to y x if and only if y {\displaystyle {\begin{matrix}x~{\text{is equal to}}~y\\x~{\text{if and only if}}~y\end{matrix}}}
x = y x ⇔ y {\displaystyle {\begin{matrix}x=y\\x\Leftrightarrow y\end{matrix}}}
Just one of x , y , z is false . {\displaystyle {\begin{matrix}{\text{Just one of}}\\x,y,z\\{\text{is false}}.\end{matrix}}}
x ′ y z ∨ x y ′ z ∨ x y z ′ {\displaystyle {\begin{array}{l}x'y~z~~~\lor \\x~y'z~~~\lor \\x~y~z'\end{array}}}
Just one of x , y , z is true . Partition all into x , y , z . {\displaystyle {\begin{matrix}{\text{Just one of}}\\x,y,z\\{\text{is true}}.\\[5pt]{\text{Partition all}}\\{\text{into}}~x,y,z.\end{matrix}}}
x y ′ z ′ ∨ x ′ y z ′ ∨ x ′ y ′ z {\displaystyle {\begin{array}{l}x~y'z'~~\lor \\x'y~z'~~\lor \\x'y'z\end{array}}}
(( x , y ), z ) ( x ,( y , z )) {\displaystyle {\begin{matrix}{\texttt {((}}x{\texttt {,}}y{\texttt {),}}z{\texttt {)}}\\&\\{\texttt {(}}x{\texttt {,(}}y{\texttt {,}}z{\texttt {))}}\end{matrix}}}
Oddly many of x , y , z are true . {\displaystyle {\begin{matrix}{\text{Oddly many of}}\\x,y,z\\{\text{are true}}.\end{matrix}}}
x + y + z x y z ∨ x y ′ z ′ ∨ x ′ y z ′ ∨ x ′ y ′ z {\displaystyle {\begin{array}{l}x+y+z\\[5pt]x~y~z~~~\lor \\x~y'z'~~\lor \\x'y~z'~~\lor \\x'y'z\end{array}}}
Partition w into x , y , z . Genus w comprises species x , y , z . {\displaystyle {\begin{matrix}{\text{Partition}}~w\\{\text{into}}~x,y,z.\\[5pt]{\text{Genus}}~w~{\text{comprises}}\\{\text{species}}~x,y,z.\end{matrix}}}
w ′ x ′ y ′ z ′ ∨ w x y ′ z ′ ∨ w x ′ y z ′ ∨ w x ′ y ′ z {\displaystyle {\begin{array}{l}w'x'y'z'~~\lor \\w~x~y'z'~~\lor \\w~x'y~z'~~\lor \\w~x'y'z\end{array}}}
x + y = ( x , y ) x + y + z = (( x , y ), z ) = ( x ,( y , z )) {\displaystyle {\begin{matrix}x+y~=~{\texttt {(}}x{\texttt {,}}y{\texttt {)}}\\[6pt]x+y+z~=~{\texttt {((}}x{\texttt {,}}y{\texttt {),}}z{\texttt {)}}~=~{\texttt {(}}x{\texttt {,(}}y{\texttt {,}}z{\texttt {))}}\end{matrix}}}
⟨ A ⟩ ⟨ a 1 , … , a n ⟩ { ( a 1 , … , a n ) } A 1 × … × A n ∏ i = 1 n A i {\displaystyle {\begin{matrix}\langle {\mathcal {A}}\rangle \\[2pt]\langle a_{1},\ldots ,a_{n}\rangle \\[2pt]\{(a_{1},\ldots ,a_{n})\}\\[2pt]A_{1}\times \ldots \times A_{n}\\[2pt]\textstyle \prod _{i=1}^{n}A_{i}\end{matrix}}}
Set of cells , coordinate tuples , points, or vectors in the universe of discourse {\displaystyle {\begin{matrix}{\text{Set of cells}},\\[2pt]{\text{coordinate tuples}},\\[2pt]{\text{points, or vectors}}\\[2pt]{\text{in the universe}}\\[2pt]{\text{of discourse}}\end{matrix}}}
[ A ] ( A , A ↑ ) ( A + → B ) ( A , ( A → B ) ) [ a 1 , … , a n ] {\displaystyle {\begin{matrix}[{\mathcal {A}}]\\[2pt](A,A^{\uparrow })\\[2pt](A~+\!\to \mathbb {B} )\\[2pt](A,(A\to \mathbb {B} ))\\[2pt][a_{1},\ldots ,a_{n}]\end{matrix}}}
Universe of discourse based on the features { a 1 , … , a n } {\displaystyle {\begin{matrix}{\text{Universe of discourse}}\\[2pt]{\text{based on the features}}\\[2pt]\{a_{1},\ldots ,a_{n}\}\end{matrix}}}
( B n , ( B n → B ) ) ( B n + → B ) [ B n ] {\displaystyle {\begin{matrix}(\mathbb {B} ^{n},(\mathbb {B} ^{n}\to \mathbb {B} ))\\[2pt](\mathbb {B} ^{n}~+\!\to \mathbb {B} )\\[2pt][\mathbb {B} ^{n}]\end{matrix}}}
∑ i = 1 n e i = e 1 + … + e n where { e i = a i or e i = 0 } for i = 1 to n . {\displaystyle \sum _{i=1}^{n}e_{i}~=~e_{1}+\ldots +e_{n}~{\text{where}}~\left\{{\begin{matrix}e_{i}=a_{i}\\{\text{or}}\\e_{i}=0\end{matrix}}\right\}~{\text{for}}~i=1~{\text{to}}~n.}
∏ i = 1 n e i = e 1 ⋅ … ⋅ e n where { e i = a i or e i = 1 } for i = 1 to n . {\displaystyle \prod _{i=1}^{n}e_{i}~=~e_{1}\cdot \ldots \cdot e_{n}~{\text{where}}~\left\{{\begin{matrix}e_{i}=a_{i}\\{\text{or}}\\e_{i}=1\end{matrix}}\right\}~{\text{for}}~i=1~{\text{to}}~n.}
∏ i = 1 n e i = e 1 ⋅ … ⋅ e n where { e i = a i or e i = ( a i ) } for i = 1 to n . {\displaystyle \prod _{i=1}^{n}e_{i}~=~e_{1}\cdot \ldots \cdot e_{n}~{\text{where}}~\left\{{\begin{matrix}e_{i}=a_{i}\\{\text{or}}\\e_{i}={\texttt {(}}a_{i}{\texttt {)}}\end{matrix}}\right\}~{\text{for}}~i=1~{\text{to}}~n.}