This site is supported by donations to The OEIS Foundation.
User:Jon Awbrey/Exploratory Qualitative Analysis of Sequential Observation Data
Author: Jon Awbrey
Contents
- 1 Family Interaction Study • Comments
- 1.1 Note 1
- 1.2 Note 2
- 1.3 Note 3
- 1.4 Note 4
- 1.5 Note 5. Quality Time
- 1.6 Note 6
- 1.7 Note 7
- 1.8 Note 8. Two-Level Formal Languages (2-FLs)
- 1.9 Note 9. Reading the Family Interaction Datasets as Two-Level Formal Languages : 1
- 1.10 Note 10. Reading the Family Interaction Datasets as Two-Level Formal Languages : 2
- 1.11 Note 11. Reading the Family Interaction Datasets as Two-Level Formal Languages : 3
- 1.12 Note 12. Reading the Family Interaction Datasets as Two-Level Formal Languages : 4
- 1.13 Note 13. Reading the Family Interaction Datasets as Two-Level Formal Languages : 5
- 1.14 Note 14. Reading the Family Interaction Datasets as Two-Level Formal Languages : 6
- 2 Family Interaction Study • Datasets
- 3 Family Interaction Study • Outputs
- 4 Document History
Family Interaction Study • Comments
Note 1
Here is one vignette that comes to mind under the “knowledge soup” category, at least in the sense that one has to back up and explore the unstructured aspects of learning and reasoning processes, as they manifest themselves over time, for example, in sequential interaction data.
I will give you the codebooks and a sample raw dataset first, just in case you want to do a bit of undirected exploratory data analysis, and later I'll explain the set-up and its implications in full detail.
Family Interaction Data • Single Event Codes
f#_family_member f1_child f2_father f3_mother f4_older_brother f5_older_sister f6_younger_brother f7_younger_sister f8_household_pets f9_multiple_recipients f0_objects c##_content c1#_conversation c11_positive_verbal c12_talk c13_negative_verbal c2#_affiliate/distance c21_endearment c22_tease c23_verbal_attack c3#_clear_directive c31_request c32_command c33_coerce c4#_ambiguous_directive c41_request_ambiguous c42_command_ambiguous c43_coerce_ambiguous c5#_response_to_directive c51_agree c52 c53_refuse c6#_vocal_behavior c61 c62_vocal c63 c7#_nonverbal_behavior c71_positive_nonverbal c72_neutral_nonverbal c73_negative_nonverbal c8#_low_grade_physical_contact c81_touch c82 c83_physical_aggression c9#_pronounced_physical_interaction c91_hold c92_physical_interact c93_physical_attack c0#_compliance_behavior c01_comply c02 c03_noncomply v#_valence v1_exuberant_affect v2_positive_affect v3_neutral_affect v4_negative_affect v5_extreme_negative_affect
Family Interaction Data • Transition Event Codes
j1_f*_family_member j1_f#_null_value j1_f1_child j1_f2_father j1_f3_mother j2_c*_content j2_c#_null_value j2_c1_conversation j2_c2_affiliate/distance j2_c3_clear_directive j2_c4_ambiguous_directive j2_c5_response_to_directive j2_c6_vocal_behavior j2_c7_nonverbal_behavior j2_c8_low_grade_physical_contact j2_c9_pronounced_physical_interaction j2_c0_compliance_behavior j3_q*_quality j3_q#_null_value j3_q1_positive j3_q2_neutral j3_q3_negative j4_v*_valence j4_v#_null_value j4_v1_exuberant_affect j4_v2_positive_affect j4_v3_neutral_affect j4_v4_negative_affect j4_v5_extreme_negative_affect k1_f*_family_member k1_f#_null_value k1_f1_child k1_f2_father k1_f3_mother k2_c*_content k2_c#_null_value k2_c1_conversation k2_c2_affiliate/distance k2_c3_clear_directive k2_c4_ambiguous_directive k2_c5_response_to_directive k2_c6_vocal_behavior k2_c7_nonverbal_behavior k2_c8_low_grade_physical_contact k2_c9_pronounced_physical_interaction k2_c0_compliance_behavior k3_q*_quality k3_q#_null_value k3_q1_positive k3_q2_neutral k3_q3_negative k4_v*_valence k4_v#_null_value k4_v1_exuberant_affect k4_v2_positive_affect k4_v3_neutral_affect k4_v4_negative_affect k4_v5_extreme_negative_affect
Family Interaction Study • Observational Dataset
------------------------------------------------------------------------ TRIAL FAMILY SESSION FOCUS OBSERVER FAMILY MEMBERS MO/DY/YR HR:MN 1 MXYZ 1 1 22 13000000 12/03/86 12:58 ------------------------------------------------------------------------ Family Interaction Transitions, Observational Data (FIT.OBS) File: 0 -00100 0 0 99999 0 2 -00302 2 2 31213 5 2 11233 8 2 34213 10 2 33213 18 2 10133 19 2 14233 22 2 30113 24 2 99999 29 2 31113 40 2 11233 43 2 31212 46 2 11232 51 2 31213 54 2 11232 56 2 99999 61 2 11233 68 2 36213 70 2 33213 73 2 16232 74 2 33213 77 2 16232 78 2 31312 82 2 99999 91 2 11233 94 2 31213 96 2 99999 101 2 31112 103 2 11232 106 2 31213 108 2 11232 109 2 36212 112 2 16232 115 2 11232 120 2 31212 122 2 11232 127 2 16232 131 2 11232 136 2 16232 138 2 31213 143 2 11232 148 2 16232 155 2 31212 160 2 16232 168 2 31213 170 2 33213 175 2 10133 177 2 35113 184 2 31213 187 2 30113 189 2 11233 192 2 31213 194 2 11233 197 2 31213 200 2 11232 202 2 16232 205 2 99999 211 2 11232 214 2 31213 218 2 13233 222 2 35113 225 2 31213 227 2 11233 228 2 30113 230 2 11234 234 2 31212 238 2 33213 241 2 10133 242 2 31213 244 2 11232 245 2 31213 252 2 11233 254 2 31213 256 2 16233 267 2 11232 269 2 11231 278 2 34213 282 2 10133 287 2 31213 289 2 11232 291 2 31213 296 2 13133 301 2 35113 305 2 11233 309 2 31213 311 2 11233 313 2 31213 316 2 11233 319 2 31213 322 2 11233 323 2 31213 324 2 11233 326 2 33213 329 2 10133 331 2 11233 333 2 31112 338 2 11233 342 2 31213 344 2 11233 347 2 31213 349 2 11233 351 2 31213 352 2 16233 354 2 36212 356 2 11233 362 2 31213 367 2 11233 370 2 31213 371 2 11232 373 2 31212 378 2 11232 381 2 31213 382 2 11233 389 2 31213 392 2 34213 394 2 10133 396 2 31113 398 2 11233 401 2 31213 403 2 11233 405 2 31212 406 2 11233 409 2 31213 412 2 11233 414 2 31213 416 2 36212 417 2 16232 419 2 31312 422 2 33213 426 2 33213 430 2 10133 431 2 10133 434 2 31213 438 2 11233 439 2 31213 440 2 11233 441 2 31213 443 2 11233 449 2 31112 450 2 31212 455 2 16232 457 2 31213 462 2 11232 463 2 31212 467 2 16232 469 2 31213 473 2 11233 477 2 31213 479 2 11133 490 2 31113 492 2 31213 495 2 16232 514 2 31112 517 2 16232 524 2 11232 527 2 31213 530 2 16232 534 2 36212 537 2 32212 539 2 16232 544 2 31213 547 2 11233 548 2 31213 549 2 11232 553 2 99999 561 2 16212 564 2 31213 569 2 11232 575 2 31314 577 2 31213 585 2 16232 589 2 33213 591 2 10133 593 2 11233 595 2 31213 599 2 88888 603 0 -00500 605
Family Interaction Transitions • Logical Representation
File Type : FIT.LOG
(( j1_f# j2_c# j3_q# j4_v# k1_f3 k2_c1 k3_q2 k4_v3 )( j1_f3 j2_c1 j3_q2 j4_v3 k1_f1 k2_c1 k3_q2 k4_v3 )( j1_f1 j2_c1 j3_q2 j4_v3 k1_f3 k2_c4 k3_q2 k4_v3 )( j1_f3 j2_c4 j3_q2 j4_v3 k1_f3 k2_c3 k3_q2 k4_v3 )( j1_f3 j2_c3 j3_q2 j4_v3 k1_f1 k2_c0 k3_q1 k4_v3 )( j1_f1 j2_c0 j3_q1 j4_v3 k1_f1 k2_c4 k3_q2 k4_v3 )( j1_f1 j2_c4 j3_q2 j4_v3 k1_f3 k2_c0 k3_q1 k4_v3 )( j1_f3 j2_c0 j3_q1 j4_v3 k1_f# k2_c# k3_q# k4_v# )( j1_f# j2_c# j3_q# j4_v# k1_f3 k2_c1 k3_q1 k4_v3 )( j1_f3 j2_c1 j3_q1 j4_v3 k1_f1 k2_c1 k3_q2 k4_v3 )( j1_f1 j2_c1 j3_q2 j4_v3 k1_f3 k2_c1 k3_q2 k4_v2 )( j1_f3 j2_c1 j3_q2 j4_v2 k1_f1 k2_c1 k3_q2 k4_v2 )( j1_f1 j2_c1 j3_q2 j4_v2 k1_f3 k2_c1 k3_q2 k4_v3 )( j1_f3 j2_c1 j3_q2 j4_v3 k1_f1 k2_c1 k3_q2 k4_v2 )( j1_f1 j2_c1 j3_q2 j4_v2 k1_f# k2_c# k3_q# k4_v# )( j1_f# j2_c# j3_q# j4_v# k1_f1 k2_c1 k3_q2 k4_v3 )( j1_f1 j2_c1 j3_q2 j4_v3 k1_f3 k2_c6 k3_q2 k4_v3 )( j1_f3 j2_c6 j3_q2 j4_v3 k1_f3 k2_c3 k3_q2 k4_v3 )( j1_f3 j2_c3 j3_q2 j4_v3 k1_f1 k2_c6 k3_q2 k4_v2 )( j1_f1 j2_c6 j3_q2 j4_v2 k1_f3 k2_c3 k3_q2 k4_v3 )( j1_f3 j2_c3 j3_q2 j4_v3 k1_f1 k2_c6 k3_q2 k4_v2 )( j1_f1 j2_c6 j3_q2 j4_v2 k1_f3 k2_c1 k3_q3 k4_v2 )( j1_f3 j2_c1 j3_q3 j4_v2 k1_f# k2_c# k3_q# k4_v# )( j1_f# j2_c# j3_q# j4_v# k1_f1 k2_c1 k3_q2 k4_v3 )( j1_f1 j2_c1 j3_q2 j4_v3 k1_f3 k2_c1 k3_q2 k4_v3 )( j1_f3 j2_c1 j3_q2 j4_v3 k1_f# k2_c# k3_q# k4_v# )( j1_f# j2_c# j3_q# j4_v# k1_f3 k2_c1 k3_q1 k4_v2 )( j1_f3 j2_c1 j3_q1 j4_v2 k1_f1 k2_c1 k3_q2 k4_v2 )( j1_f1 j2_c1 j3_q2 j4_v2 k1_f3 k2_c1 k3_q2 k4_v3 )( j1_f3 j2_c1 j3_q2 j4_v3 k1_f1 k2_c1 k3_q2 k4_v2 )( j1_f1 j2_c1 j3_q2 j4_v2 k1_f3 k2_c6 k3_q2 k4_v2 )( j1_f3 j2_c6 j3_q2 j4_v2 k1_f1 k2_c6 k3_q2 k4_v2 )( j1_f1 j2_c6 j3_q2 j4_v2 k1_f1 k2_c1 k3_q2 k4_v2 )( j1_f1 j2_c1 j3_q2 j4_v2 k1_f3 k2_c1 k3_q2 k4_v2 )( j1_f3 j2_c1 j3_q2 j4_v2 k1_f1 k2_c1 k3_q2 k4_v2 )( j1_f1 j2_c1 j3_q2 j4_v2 k1_f1 k2_c6 k3_q2 k4_v2 )( j1_f1 j2_c6 j3_q2 j4_v2 k1_f1 k2_c1 k3_q2 k4_v2 )( j1_f1 j2_c1 j3_q2 j4_v2 k1_f1 k2_c6 k3_q2 k4_v2 )( j1_f1 j2_c6 j3_q2 j4_v2 k1_f3 k2_c1 k3_q2 k4_v3 )( j1_f3 j2_c1 j3_q2 j4_v3 k1_f1 k2_c1 k3_q2 k4_v2 )( j1_f1 j2_c1 j3_q2 j4_v2 k1_f1 k2_c6 k3_q2 k4_v2 )( j1_f1 j2_c6 j3_q2 j4_v2 k1_f3 k2_c1 k3_q2 k4_v2 )( j1_f3 j2_c1 j3_q2 j4_v2 k1_f1 k2_c6 k3_q2 k4_v2 )( j1_f1 j2_c6 j3_q2 j4_v2 k1_f3 k2_c1 k3_q2 k4_v3 )( j1_f3 j2_c1 j3_q2 j4_v3 k1_f3 k2_c3 k3_q2 k4_v3 )( j1_f3 j2_c3 j3_q2 j4_v3 k1_f1 k2_c0 k3_q1 k4_v3 )( j1_f1 j2_c0 j3_q1 j4_v3 k1_f3 k2_c5 k3_q1 k4_v3 )( j1_f3 j2_c5 j3_q1 j4_v3 k1_f3 k2_c1 k3_q2 k4_v3 )( j1_f3 j2_c1 j3_q2 j4_v3 k1_f3 k2_c0 k3_q1 k4_v3 )( j1_f3 j2_c0 j3_q1 j4_v3 k1_f1 k2_c1 k3_q2 k4_v3 )( j1_f1 j2_c1 j3_q2 j4_v3 k1_f3 k2_c1 k3_q2 k4_v3 )( j1_f3 j2_c1 j3_q2 j4_v3 k1_f1 k2_c1 k3_q2 k4_v3 )( j1_f1 j2_c1 j3_q2 j4_v3 k1_f3 k2_c1 k3_q2 k4_v3 )( j1_f3 j2_c1 j3_q2 j4_v3 k1_f1 k2_c1 k3_q2 k4_v2 )( j1_f1 j2_c1 j3_q2 j4_v2 k1_f1 k2_c6 k3_q2 k4_v2 )( j1_f1 j2_c6 j3_q2 j4_v2 k1_f# k2_c# k3_q# k4_v# )( j1_f# j2_c# j3_q# j4_v# k1_f1 k2_c1 k3_q2 k4_v2 )( j1_f1 j2_c1 j3_q2 j4_v2 k1_f3 k2_c1 k3_q2 k4_v3 )( j1_f3 j2_c1 j3_q2 j4_v3 k1_f1 k2_c3 k3_q2 k4_v3 )( j1_f1 j2_c3 j3_q2 j4_v3 k1_f3 k2_c5 k3_q1 k4_v3 )( j1_f3 j2_c5 j3_q1 j4_v3 k1_f3 k2_c1 k3_q2 k4_v3 )( j1_f3 j2_c1 j3_q2 j4_v3 k1_f1 k2_c1 k3_q2 k4_v3 )( j1_f1 j2_c1 j3_q2 j4_v3 k1_f3 k2_c0 k3_q1 k4_v3 )( j1_f3 j2_c0 j3_q1 j4_v3 k1_f1 k2_c1 k3_q2 k4_v4 )( j1_f1 j2_c1 j3_q2 j4_v4 k1_f3 k2_c1 k3_q2 k4_v2 )( j1_f3 j2_c1 j3_q2 j4_v2 k1_f3 k2_c3 k3_q2 k4_v3 )( j1_f3 j2_c3 j3_q2 j4_v3 k1_f1 k2_c0 k3_q1 k4_v3 )( j1_f1 j2_c0 j3_q1 j4_v3 k1_f3 k2_c1 k3_q2 k4_v3 )( j1_f3 j2_c1 j3_q2 j4_v3 k1_f1 k2_c1 k3_q2 k4_v2 )( j1_f1 j2_c1 j3_q2 j4_v2 k1_f3 k2_c1 k3_q2 k4_v3 )( j1_f3 j2_c1 j3_q2 j4_v3 k1_f1 k2_c1 k3_q2 k4_v3 )( j1_f1 j2_c1 j3_q2 j4_v3 k1_f3 k2_c1 k3_q2 k4_v3 )( j1_f3 j2_c1 j3_q2 j4_v3 k1_f1 k2_c6 k3_q2 k4_v3 )( j1_f1 j2_c6 j3_q2 j4_v3 k1_f1 k2_c1 k3_q2 k4_v2 )( j1_f1 j2_c1 j3_q2 j4_v2 k1_f1 k2_c1 k3_q2 k4_v1 )( j1_f1 j2_c1 j3_q2 j4_v1 k1_f3 k2_c4 k3_q2 k4_v3 )( j1_f3 j2_c4 j3_q2 j4_v3 k1_f1 k2_c0 k3_q1 k4_v3 )( j1_f1 j2_c0 j3_q1 j4_v3 k1_f3 k2_c1 k3_q2 k4_v3 )( j1_f3 j2_c1 j3_q2 j4_v3 k1_f1 k2_c1 k3_q2 k4_v2 )( j1_f1 j2_c1 j3_q2 j4_v2 k1_f3 k2_c1 k3_q2 k4_v3 )( j1_f3 j2_c1 j3_q2 j4_v3 k1_f1 k2_c3 k3_q1 k4_v3 )( j1_f1 j2_c3 j3_q1 j4_v3 k1_f3 k2_c5 k3_q1 k4_v3 )( j1_f3 j2_c5 j3_q1 j4_v3 k1_f1 k2_c1 k3_q2 k4_v3 )( j1_f1 j2_c1 j3_q2 j4_v3 k1_f3 k2_c1 k3_q2 k4_v3 )( j1_f3 j2_c1 j3_q2 j4_v3 k1_f1 k2_c1 k3_q2 k4_v3 )( j1_f1 j2_c1 j3_q2 j4_v3 k1_f3 k2_c1 k3_q2 k4_v3 )( j1_f3 j2_c1 j3_q2 j4_v3 k1_f1 k2_c1 k3_q2 k4_v3 )( j1_f1 j2_c1 j3_q2 j4_v3 k1_f3 k2_c1 k3_q2 k4_v3 )( j1_f3 j2_c1 j3_q2 j4_v3 k1_f1 k2_c1 k3_q2 k4_v3 )( j1_f1 j2_c1 j3_q2 j4_v3 k1_f3 k2_c1 k3_q2 k4_v3 )( j1_f3 j2_c1 j3_q2 j4_v3 k1_f1 k2_c1 k3_q2 k4_v3 )( j1_f1 j2_c1 j3_q2 j4_v3 k1_f3 k2_c3 k3_q2 k4_v3 )( j1_f3 j2_c3 j3_q2 j4_v3 k1_f1 k2_c0 k3_q1 k4_v3 )( j1_f1 j2_c0 j3_q1 j4_v3 k1_f1 k2_c1 k3_q2 k4_v3 )( j1_f1 j2_c1 j3_q2 j4_v3 k1_f3 k2_c1 k3_q1 k4_v2 )( j1_f3 j2_c1 j3_q1 j4_v2 k1_f1 k2_c1 k3_q2 k4_v3 )( j1_f1 j2_c1 j3_q2 j4_v3 k1_f3 k2_c1 k3_q2 k4_v3 )( j1_f3 j2_c1 j3_q2 j4_v3 k1_f1 k2_c1 k3_q2 k4_v3 )( j1_f1 j2_c1 j3_q2 j4_v3 k1_f3 k2_c1 k3_q2 k4_v3 )( j1_f3 j2_c1 j3_q2 j4_v3 k1_f1 k2_c1 k3_q2 k4_v3 )( j1_f1 j2_c1 j3_q2 j4_v3 k1_f3 k2_c1 k3_q2 k4_v3 )( j1_f3 j2_c1 j3_q2 j4_v3 k1_f1 k2_c6 k3_q2 k4_v3 )( j1_f1 j2_c6 j3_q2 j4_v3 k1_f3 k2_c6 k3_q2 k4_v2 )( j1_f3 j2_c6 j3_q2 j4_v2 k1_f1 k2_c1 k3_q2 k4_v3 )( j1_f1 j2_c1 j3_q2 j4_v3 k1_f3 k2_c1 k3_q2 k4_v3 )( j1_f3 j2_c1 j3_q2 j4_v3 k1_f1 k2_c1 k3_q2 k4_v3 )( j1_f1 j2_c1 j3_q2 j4_v3 k1_f3 k2_c1 k3_q2 k4_v3 )( j1_f3 j2_c1 j3_q2 j4_v3 k1_f1 k2_c1 k3_q2 k4_v2 )( j1_f1 j2_c1 j3_q2 j4_v2 k1_f3 k2_c1 k3_q2 k4_v2 )( j1_f3 j2_c1 j3_q2 j4_v2 k1_f1 k2_c1 k3_q2 k4_v2 )( j1_f1 j2_c1 j3_q2 j4_v2 k1_f3 k2_c1 k3_q2 k4_v3 )( j1_f3 j2_c1 j3_q2 j4_v3 k1_f1 k2_c1 k3_q2 k4_v3 )( j1_f1 j2_c1 j3_q2 j4_v3 k1_f3 k2_c1 k3_q2 k4_v3 )( j1_f3 j2_c1 j3_q2 j4_v3 k1_f3 k2_c4 k3_q2 k4_v3 )( j1_f3 j2_c4 j3_q2 j4_v3 k1_f1 k2_c0 k3_q1 k4_v3 )( j1_f1 j2_c0 j3_q1 j4_v3 k1_f3 k2_c1 k3_q1 k4_v3 )( j1_f3 j2_c1 j3_q1 j4_v3 k1_f1 k2_c1 k3_q2 k4_v3 )( j1_f1 j2_c1 j3_q2 j4_v3 k1_f3 k2_c1 k3_q2 k4_v3 )( j1_f3 j2_c1 j3_q2 j4_v3 k1_f1 k2_c1 k3_q2 k4_v3 )( j1_f1 j2_c1 j3_q2 j4_v3 k1_f3 k2_c1 k3_q2 k4_v2 )( j1_f3 j2_c1 j3_q2 j4_v2 k1_f1 k2_c1 k3_q2 k4_v3 )( j1_f1 j2_c1 j3_q2 j4_v3 k1_f3 k2_c1 k3_q2 k4_v3 )( j1_f3 j2_c1 j3_q2 j4_v3 k1_f1 k2_c1 k3_q2 k4_v3 )( j1_f1 j2_c1 j3_q2 j4_v3 k1_f3 k2_c1 k3_q2 k4_v3 )( j1_f3 j2_c1 j3_q2 j4_v3 k1_f3 k2_c6 k3_q2 k4_v2 )( j1_f3 j2_c6 j3_q2 j4_v2 k1_f1 k2_c6 k3_q2 k4_v2 )( j1_f1 j2_c6 j3_q2 j4_v2 k1_f3 k2_c1 k3_q3 k4_v2 )( j1_f3 j2_c1 j3_q3 j4_v2 k1_f3 k2_c3 k3_q2 k4_v3 )( j1_f3 j2_c3 j3_q2 j4_v3 k1_f3 k2_c3 k3_q2 k4_v3 )( j1_f3 j2_c3 j3_q2 j4_v3 k1_f1 k2_c0 k3_q1 k4_v3 )( j1_f1 j2_c0 j3_q1 j4_v3 k1_f1 k2_c0 k3_q1 k4_v3 )( j1_f1 j2_c0 j3_q1 j4_v3 k1_f3 k2_c1 k3_q2 k4_v3 )( j1_f3 j2_c1 j3_q2 j4_v3 k1_f1 k2_c1 k3_q2 k4_v3 )( j1_f1 j2_c1 j3_q2 j4_v3 k1_f3 k2_c1 k3_q2 k4_v3 )( j1_f3 j2_c1 j3_q2 j4_v3 k1_f1 k2_c1 k3_q2 k4_v3 )( j1_f1 j2_c1 j3_q2 j4_v3 k1_f3 k2_c1 k3_q2 k4_v3 )( j1_f3 j2_c1 j3_q2 j4_v3 k1_f1 k2_c1 k3_q2 k4_v3 )( j1_f1 j2_c1 j3_q2 j4_v3 k1_f3 k2_c1 k3_q1 k4_v2 )( j1_f3 j2_c1 j3_q1 j4_v2 k1_f3 k2_c1 k3_q2 k4_v2 )( j1_f3 j2_c1 j3_q2 j4_v2 k1_f1 k2_c6 k3_q2 k4_v2 )( j1_f1 j2_c6 j3_q2 j4_v2 k1_f3 k2_c1 k3_q2 k4_v3 )( j1_f3 j2_c1 j3_q2 j4_v3 k1_f1 k2_c1 k3_q2 k4_v2 )( j1_f1 j2_c1 j3_q2 j4_v2 k1_f3 k2_c1 k3_q2 k4_v2 )( j1_f3 j2_c1 j3_q2 j4_v2 k1_f1 k2_c6 k3_q2 k4_v2 )( j1_f1 j2_c6 j3_q2 j4_v2 k1_f3 k2_c1 k3_q2 k4_v3 )( j1_f3 j2_c1 j3_q2 j4_v3 k1_f1 k2_c1 k3_q2 k4_v3 )( j1_f1 j2_c1 j3_q2 j4_v3 k1_f3 k2_c1 k3_q2 k4_v3 )( j1_f3 j2_c1 j3_q2 j4_v3 k1_f1 k2_c1 k3_q1 k4_v3 )( j1_f1 j2_c1 j3_q1 j4_v3 k1_f3 k2_c1 k3_q1 k4_v3 )( j1_f3 j2_c1 j3_q1 j4_v3 k1_f3 k2_c1 k3_q2 k4_v3 )( j1_f3 j2_c1 j3_q2 j4_v3 k1_f1 k2_c6 k3_q2 k4_v2 )( j1_f1 j2_c6 j3_q2 j4_v2 k1_f3 k2_c1 k3_q1 k4_v2 )( j1_f3 j2_c1 j3_q1 j4_v2 k1_f1 k2_c6 k3_q2 k4_v2 )( j1_f1 j2_c6 j3_q2 j4_v2 k1_f1 k2_c1 k3_q2 k4_v2 )( j1_f1 j2_c1 j3_q2 j4_v2 k1_f3 k2_c1 k3_q2 k4_v3 )( j1_f3 j2_c1 j3_q2 j4_v3 k1_f1 k2_c6 k3_q2 k4_v2 )( j1_f1 j2_c6 j3_q2 j4_v2 k1_f3 k2_c6 k3_q2 k4_v2 )( j1_f3 j2_c6 j3_q2 j4_v2 k1_f3 k2_c2 k3_q2 k4_v2 )( j1_f3 j2_c2 j3_q2 j4_v2 k1_f1 k2_c6 k3_q2 k4_v2 )( j1_f1 j2_c6 j3_q2 j4_v2 k1_f3 k2_c1 k3_q2 k4_v3 )( j1_f3 j2_c1 j3_q2 j4_v3 k1_f1 k2_c1 k3_q2 k4_v3 )( j1_f1 j2_c1 j3_q2 j4_v3 k1_f3 k2_c1 k3_q2 k4_v3 )( j1_f3 j2_c1 j3_q2 j4_v3 k1_f1 k2_c1 k3_q2 k4_v2 )( j1_f1 j2_c1 j3_q2 j4_v2 k1_f# k2_c# k3_q# k4_v# )( j1_f# j2_c# j3_q# j4_v# k1_f1 k2_c6 k3_q2 k4_v2 )( j1_f1 j2_c6 j3_q2 j4_v2 k1_f3 k2_c1 k3_q2 k4_v3 )( j1_f3 j2_c1 j3_q2 j4_v3 k1_f1 k2_c1 k3_q2 k4_v2 )( j1_f1 j2_c1 j3_q2 j4_v2 k1_f3 k2_c1 k3_q3 k4_v4 )( j1_f3 j2_c1 j3_q3 j4_v4 k1_f3 k2_c1 k3_q2 k4_v3 )( j1_f3 j2_c1 j3_q2 j4_v3 k1_f1 k2_c6 k3_q2 k4_v2 )( j1_f1 j2_c6 j3_q2 j4_v2 k1_f3 k2_c3 k3_q2 k4_v3 )( j1_f3 j2_c3 j3_q2 j4_v3 k1_f1 k2_c0 k3_q1 k4_v3 )( j1_f1 j2_c0 j3_q1 j4_v3 k1_f1 k2_c1 k3_q2 k4_v3 )( j1_f1 j2_c1 j3_q2 j4_v3 k1_f3 k2_c1 k3_q2 k4_v3 )) (( j1_f# ),( j1_f1 ),( j1_f3 )) (( j2_c# ),( j2_c1 ),( j2_c2 ),( j2_c3 ),( j2_c4 ),( j2_c5 ), ( j2_c6 ),( j2_c7 ),( j2_c8 ),( j2_c9 ),( j2_c0 )) (( j3_q# ),( j3_q1 ),( j3_q2 ),( j3_q3 )) (( j4_v# ),( j4_v1 ),( j4_v2 ),( j4_v3 ),( j4_v4 ),( j4_v5 )) ((( j2_c7 )( j2_c8 )( j2_c9 )( j4_v5 ))) (( k1_f# ),( k1_f1 ),( k1_f3 )) (( k2_c# ),( k2_c1 ),( k2_c2 ),( k2_c3 ),( k2_c4 ),( k2_c5 ), ( k2_c6 ),( k2_c7 ),( k2_c8 ),( k2_c9 ),( k2_c0 )) (( k3_q# ),( k3_q1 ),( k3_q2 ),( k3_q3 )) (( k4_v# ),( k4_v1 ),( k4_v2 ),( k4_v3 ),( k4_v4 ),( k4_v5 )) ((( k2_c7 )( k2_c8 )( k2_c9 )( k4_v5 )))
Note 2
| Since 1987, I have been arguing that no ontology or | knowledge base can ever be adequate unless it comes | to grips with what I have called the "knowledge soup" -- | the loosely organized, semi-structured mix of whatever | people have in their heads. | | John Sowa | http://suo.ieee.org/email/msg10558.html
Sequential Interaction Data
I will try to explain why this dataset is interesting to me, and why it comes to mind whenever we turn to discussing the associative "prima materia" or semiotic "massa confusa" out of which our more rational knowledge precipitates, which is one of the things that I take John Sowa to be talking about under the label of "knowledge soup".
The general type of data we are dealing with here is a timed sequence of categorical or qualitative codes. I think of it as a sequence of "words" or "sentences" that come from a very simple formal language, and the game afoot is to discover the grammar of the discourse, to find whatever patterns may be found in the data, whether they rule it in the manner of an absolute law or a likely constraint.
Family Interaction Dataset
An "episode" is coded as a 7-tuple x = (x_0, x_1, x_2, x_3, x_4, x_5, x_6).
The components x_0, ..., x_5 are categorical codes that are described in the codebook.
The component x_6 is a non-negative integer code that records the elapsed time in seconds at which the episode ends.
Here is an initial segment of an individual data file, a set of records from a single session of observation:
| Family Interaction Data | | 0 -00100 0 | 0 99999 0 | 2 -00302 2 | 2 31213 5 | 2 11233 8 | 2 34213 10 | 2 33213 18 | 2 10133 19 | 2 14233 22 | 2 30113 24 | 2 99999 29 | 2 31113 40 | 2 11233 43 | 2 31212 46 | 2 11232 51 | 2 31213 54 | 2 11232 56 | 2 99999 61 | ... ... ...
Here is the meaning of the categorical data codes:
| Family Interaction Codes | | x_0 is a code denoting the overall session type: | | "1" means "work", a task-structured session | "2" means "play", a free-interaction session | | x_1 and x_4 are codes that record the two family members | that are present during the session, according to the | following scheme: | | f#_family_member | f1_child "1" means "child" | f2_father "2" means "father" | f3_mother "3" means "mother" | f4_older_brother etc. | f5_older_sister | f6_younger_brother | f7_younger_sister | f8_household_pets | f9_multiple_recipients | f0_objects | | x_2 and x_3 are codes for the "content type" and "content quality", | respectively. Together they form a composite code that denotes | a signed category of activity according to the following scheme, | where x_2 by itself denotes the "content type" and x_3 denotes | the "logical quality" of the episode: | | c##_content | c1#_conversation "1" means "conversation" | c11_positive_verbal | c12_talk | c13_negative_verbal | c2#_affiliate/distance "2" means "affiliate/distance" | c21_endearment | c22_tease | c23_verbal_attack | c3#_clear_directive "3" means "clear directive" | c31_request | c32_command | c33_coerce | c4#_ambiguous_directive "4" means "ambiguous directive" | c41_request_ambiguous | c42_command_ambiguous | c43_coerce_ambiguous | c5#_response_to_directive "5" means "response to directive" | c51_agree | c52 | c53_refuse | c6#_vocal_behavior "6" means "vocal behavior" | c61 | c62_vocal | c63 | c7#_nonverbal_behavior "7" means "nonverbal behavior" | c71_positive_nonverbal | c72_neutral_nonverbal | c73_negative_nonverbal | c8#_low_grade_physical_contact "8" = "low grade physical contact" | c81_touch | c82 | c83_physical_aggression | c9#_pronounced_physical_interaction "9" = "pronounced physical interaction" | c91_hold | c92_physical_interact | c93_physical_attack | c0#_compliance_behavior "0" = "compliance behavior" | c01_comply | c02 | c03_noncomply | | x_5 is a code that records the "valence" | or the "affective quality" of the episode | according to the following scheme: | | v#_valence | v1_exuberant_affect "1" means "exuberant affect" | v2_positive_affect "2" means "positive affect" | v3_neutral_affect "3" means "neutral affect" | v4_negative_affect "4" means "negative affect" | v5_extreme_negative_affect "5" means "extreme negative affect" | | x_6 is a non-negative integer giving the elapsed time in seconds | at the end of the phase of activity coded in x_1 through x_5. | | Codes outside the above mentioned ranges indicate things like: | "beginning of session", "pause in activity", "end of session".
Note 3
One of the things that makes this sort of categorical sequential data interesting to me is that it provides us with an array of intermediate cases or stepping stones in several different directions of increasing complexity or generality of data. In themselves, logical features can be coded by means of the simplest type of variable, with values in the boolean domain B = {0, 1}, but boolean data is used in connection with some of the richest formal languages for conveying information, namely, propositional and quantificational calculi. In another way, the types of finite domain categorical variables that we use in these settings are intermediate in complexity between boolean variables, that range over just two values, and quantitative variables, that range over integer or real domains. In addition, these temporal sequences of categorical codes will very often take on a simple sort of quasi-linguistic structure that provides us with a bridge to the more general types of linguistic data.
For example, consider the following fragment of the family interaction data:
| 2 31213 5 | 2 11233 8 | 2 34213 10 | 2 33213 18 | 2 10133 19 | 2 14233 22 | 2 30113 24 | 2 99999 29
This can be read according to the codebook in the following way:
| Begin play session. | Mother talks to child with neutral affect. | Child talks to mother with neutral affect. | Mother ambiguously commands child with neutral affect. | Mother commands child with neutral affect. | Child obeys mother with neutral affect. | Child ambiguously commands mother with neutral affect. | Mother obeys child with neutral affect. | Pause in activity.
Note 4
One of the things that strikes you as soon as you look at anything like a real-world dataset is that you cannot engage in any form of data gathering, much less data analysis, without being involved in all sorts of enabling hypotheses, conscious or unconscious, that go far beyond the focal hypothesis of the study at hand. There are enabling hypotheses involved in the choice of a particular apparatus, codebook, or instrument. There are enabling hypotheses involved in the use of a particular method for arranging and analyzing the data collected. An enabling hypothesis may be something as simple as:
- I guess this codebook will be a useful template for viewing this particular part of the world through.
- I guess this way of looking at the data will disclose an aspect of the phenomenon or the reality that produced it.
It is too much to expect that all of our enabling hypotheses can be made explicit. As Peirce observes, abduction shades off into perception and instinct. And yet, at any moment, it is the nature of recalcitrant experience that any one of our peripheral hypotheses, so long taken for granted that it may never have been part of our conscious reflection, can rise into prominence as the one that most acutely demands to be bought into focus.
Note 5. Quality Time
We need a better term for the type of mixed mode intermediate data model that we are looking at in the family interaction study, which is typical of the data that are gathered in a wide variety of observational fields, from animal ethography to human ethnography. Either one of the terms categorical time series or qualitative temporal data seems to fit, but the latter makes for a catchier acronym, and so I will refer to this whole family of data models as QT data from here on out.
Given that guessing is a big part of the language game we play with Nature and our fellows, let us adopt a working assumption that suggests itself from the perspective of many observational studies: That it is from just such interactive settings that people slurp up “loosely organized, semi-structured mix of whatever people have in their heads”, what John Sowa calls “knowledge soup”.
Each session of observation in the family interaction study involves three participant observers: namely, the child C, the parent P, and the experimenter E. The participant role of E is minimized by means of a 1-way mirror that masks E's presence, allowing E to observe and record the interaction of C and P in a relatively unobtrusive manner.
Each of the other participants more or less observes the interaction that takes place between them, within what is called a dyadic system.
One of the interesting features of an observational set-up like this is that everyone involved is always naturally attempting to discover the patterns that are there to be found in the activity of this dyad. Thus each of the agents C, P, and E acts in some fashion as an agent of inquiry, accumulating experiences, organizing them under suitable heads, guessing what principles would serve to resolve their variety, and exposing these principles to the test of forthcoming experiences.
Note 6
Whenever we set about building a model of the reality that informs a phenomenon of interest, it is necessary to remind ourselves from time to time of these three contingencies of the modeling exercise:
- The model is not the reality.
- The model is not the appearances.
- The appearances are not the reality.
As I mentioned, the codebook that is used to convert observations into a dataset proper reflects an enabling hypothesis about the nature of the reality that produces the phenomenon of interest. No datum is so raw that it has not been cooked to some degree according to the recipe of such a codebook. Moreover, each way of looking at the dataset embodies additional helpings of ancillary provisions and auxiliary hypotheses.
I will next describe three closely related ways that I used to look at the family interaction data, all of which methods are generally useful for all sorts of QT data, such as we find in protocol analysis and in many other areas of qualitative research that involve similar species of intermediate data models (IDMs). These three paradigms are:
- Two-Level Formal Languages (2-FLs)
- Finite State Transitions (FSTs)
- Differential Logic (DLOG).
Note 7
While we are reflecting on hypotheses that we run on, many of which are so refractory that we may not have reflected on them for a very long time, if ever, we might reflect that a biological species is, in its own right, a kind of hypothesis, a bit like this:
- I guess this code is fitted to this niche.
Now I do not think anyone would imagine that the co-response between a genetic code and its environment is anything like the correspondence between an object and its mirror image, so let us not tie the word correspondence down to such literal and 2-dimensional reflections.
In seeking to model the human mind, I have become convinced that we must find a way to integrate empirical and rational faculties, my senses of which I will explain as we go, but I am sensitive to a paradox in saying this, as I would not want to say that our empirical and rational faculties are ever yet as well-integrated as we might hope them to be.
- An empirical faculty must deal with experience as it comes, toeing the line of the continuously updating data stream, and hewing closely to realtime processing constraints.
- A rational faculty has tenure, as it were, and can afford to kick back and reflect on episodes beyond the immediate crisis, and even to speculate on images of things as they never were.
In their bearing on the present example, these reflections tell us something about the sorts of methods that will tend to be more fitted to the empirical versus the rational tasks.
Formal language theory, taken at the full, is generic enough to cover just about everything that we are thinking of here, but formal languages can also be used in a more literal way to code sequences of occurrences as they happen, and this way of using formal languages is very well suited to the constraints of the empirical task. By literal I mean that the codes in a formal language L can be read in a one-to-one or injective fashion as icons or indices of the objective occurrences that they thus denote.
The next order of business will be to describe this more literal application of formal languages as an IDM (intermediate data model) for the kinds of QT data that we find in the family interaction study.
Note 8. Two-Level Formal Languages (2-FLs)
A k-level formal language (k-FL) is a selected set of finite sequences of a selected set of finite sequences of … a given finite set of symbols, called the alphabet, that is provided to start, where the selection of sequences from the previous level is enacted k times.
In particular, let L be a 2-level formal language (2-FL) over an alphabet !A!. Then L is composed of a first level language L_1 c !A!* and a second level language L_2 c L_1*, where the "kleene-star" of a set X, written X*, is the set of all finite sequences over X. It is generally convenient to let the name L denote the whole structure L = <L_1, L_2>.
It's an arbitrary matter what we call the levels of a 2-FL. Depending on what seems natural in a particular discussion, we may refer to L_1 and L_2 as "strings" and "strands", as "words" and "sentences", as "phrases" and "clauses", or as "sentences" and "paragraphs", respectively, just to name a few of the most common options that come to mind right off.
Note 9. Reading the Family Interaction Datasets as Two-Level Formal Languages : 1
Let's now develop a sense of how the family interaction dataset might look from the perspective of a 2-level formal language.
For example, consider the following fragment of the data:
| 2 31213 5 | 2 11233 8 | 2 34213 10 | 2 33213 18 | 2 10133 19 | 2 14233 22 | 2 30113 24 | 2 99999 29 | 2 31113 40 | 2 11233 43 | 2 31212 46 | 2 11232 51 | 2 31213 54 | 2 11232 56 | 2 99999 61 | 2 11233 68 | 2 36213 70 | 2 33213 73 | 2 16232 74 | 2 33213 77 | 2 16232 78 | 2 31312 82 | 2 99999 91 | 2 11233 94 | 2 31213 96 | 2 99999 101
Let's focus on the categorical variables in the middle columns, ignoring the session type and the elapsed time of each episode, using the time variable simply as a marker of sequential order, and reading the pause in activity code as a clause indicator.
Just from the sample of this first hundred seconds we have the following information about the 2-level formal language L = (L_1, L_2) that depicts the interaction between C and P.
L_1, the phrase-book, or lexicon, contains the following strings:
| 10133 = Child complies with Mother with neutral affect. | 11232 = Child talks to Mother with positive affect. | 11233 = Child talks to Mother with neutral affect. | 14233 = Child ambiguously commands Mother with neutral affect. | 16232 = Child vocalizes to Mother with positive affect. | 30113 = Mother complies with Child with neutral affect. | 31113 = Mother positively verbalizes to Child with neutral affect. | 31212 = Mother talks to Child with positive affect. | 31213 = Mother talks to Child with neutral affect. | 31312 = Mother negatively verbalizes to Child with positive affect. | 33213 = Mother commands Child with neutral affect. | 34213 = Mother ambiguously commands Child with neutral affect. | 36213 = Mother vocalizes to Child with neutral affect. | 99999 = Pause in activity.
L_2, the clause-book, or liturgy, contains the following strands:
| <11233, 31213, 99999> | | <11233, 36213, 33213, 16232, 33213, 16232, 31312, 99999> | | <31113, 11233, 31212, 11232, 31213, 11232, 99999> | | <31213, 11233, 34213, 33213, 10133, 14233, 30113, 99999>
Note 10. Reading the Family Interaction Datasets as Two-Level Formal Languages : 2
Before I can discuss the formal language view of the family interaction dataset in more detail I will need to clear up a few discrepancies between the codebook given above, which was used by a sizable community of researchers for a variety of different studies over a period of many years, and the codes as they were adapted for use in the family interaction study. At the same time, I will focus on a reduced subset of the data that is adequate to illustrate the points of central interest here. The easiest way to accomplish this is simply to give the revised codebook and the reduced dataset as follows:
Family Interaction Analysis • Abbreviated Codebook
| Family Interaction Analysis. Abbreviated Codebook | | An "episode of activity" is coded as a 4-tuple y = <y_1, y_2, y_3, y_4>. | | The components y_1, y_2, y_3 are categorical codes | that are described in the codebook. | | The component y_4 is a non-negative integer code | that records the elapsed time in seconds at which | the episode ends. | | y_1 codes the agent of the activity, | according to the following scheme: | | f_family_member | f1_child | f2_father | f3_mother | f9_null | | y_2 is a two-digit code for the content of the activity, | where the first digit records the content type and the | second digit records the logical quality of the action, | according to the following scheme: | | c_content | c0_compliance_behavior | c01_comply | c02 | c03_noncomply | c1_conversation | c11_positive_verbal | c12_talk | c13_negative_verbal | c2_affiliate/distance | c21_endearment | c22_tease | c23_verbal_attack | c3_clear_directive | c31_request | c32_command | c33_coerce | c4_ambiguous_directive | c41_request_ambiguous | c42_command_ambiguous | c43_coerce_ambiguous | c5_response_to_directive | c51_agree | c52 | c53_refuse | c6_vocal_behavior | c61 | c62_vocal | c63 | c7_nonverbal_behavior | c71_positive_nonverbal | c72_neutral_nonverbal | c73_negative_nonverbal | c8_low_grade_physical_contact | c81_touch | c82 | c83_physical_aggression | c9_pronounced_physical_interaction | c91_hold | c92_physical_interact | c93_physical_attack | c99_null | | y_3 is a code that records the "valence" | or the "affective quality" of the episode | according to the following scheme: | | v_valence | v1_exuberant_affect | v2_positive_affect | v3_neutral_affect | v4_negative_affect | v5_extreme_negative_affect | v9_null | | y_4 is a non-negative integer giving the elapsed time in seconds | at the end of the phase of activity coded in x_1 through x_5.
Family Interaction Analysis • Abbreviated Dataset 1
Listed next is the flat data file for y = (y_1, y_2, y_3, y_4). To the right of the numeric codes are written an equivalent set of alphanumeric codes that provide a bridge to several forms of logical representation that I plan to take up at a later point.
| 9 99 9 0 f9 c99 v9 | | 3 12 3 5 f3 c12 v3 | 1 12 3 8 f1 c12 v3 | 3 42 3 10 f3 c42 v3 | 3 32 3 18 f3 c32 v3 | 1 01 3 19 f1 c01 v3 | 1 42 3 22 f1 c42 v3 | 3 01 3 24 f3 c01 v3 | 9 99 9 29 f9 c99 v9 | | 3 11 3 40 f3 c11 v3 | 1 12 3 43 f1 c12 v3 | 3 12 2 46 f3 c12 v2 | 1 12 2 51 f1 c12 v2 | 3 12 3 54 f3 c12 v3 | 1 12 2 56 f1 c12 v2 | 9 99 9 61 f9 c99 v9 | | 1 12 3 68 f1 c12 v3 | 3 62 3 70 f3 c62 v3 | 3 32 3 73 f3 c32 v3 | 1 62 2 74 f1 c62 v2 | 3 32 3 77 f3 c32 v3 | 1 62 2 78 f1 c62 v2 | 3 13 2 82 f3 c13 v2 | 9 99 9 91 f9 c99 v9 | | 1 12 3 94 f1 c12 v3 | 3 12 3 96 f3 c12 v3 | 9 99 9 101 f9 c99 v9 | | 3 11 2 103 f3 c11 v2 | 1 12 2 106 f1 c12 v2 | 3 12 3 108 f3 c12 v3 | 1 12 2 109 f1 c12 v2 | 3 62 2 112 f3 c62 v2 | 1 62 2 115 f1 c62 v2 | 1 12 2 120 f1 c12 v2 | 3 12 2 122 f3 c12 v2 | 1 12 2 127 f1 c12 v2 | 1 62 2 131 f1 c62 v2 | 1 12 2 136 f1 c12 v2 | 1 62 2 138 f1 c62 v2 | 3 12 3 143 f3 c12 v3 | 1 12 2 148 f1 c12 v2 | 1 62 2 155 f1 c62 v2 | 3 12 2 160 f3 c12 v2 | 1 62 2 168 f1 c62 v2 | 3 12 3 170 f3 c12 v3 | 3 32 3 175 f3 c32 v3 | 1 01 3 177 f1 c01 v3 | 3 51 3 184 f3 c51 v3 | 3 12 3 187 f3 c12 v3 | 3 01 3 189 f3 c01 v3 | 1 12 3 192 f1 c12 v3 | 3 12 3 194 f3 c12 v3 | 1 12 3 197 f1 c12 v3 | 3 12 3 200 f3 c12 v3 | 1 12 2 202 f1 c12 v2 | 1 62 2 205 f1 c62 v2 | 9 99 9 211 f9 c99 v9 | | 1 12 2 214 f1 c12 v2 | 3 12 3 218 f3 c12 v3 | 1 32 3 222 f1 c32 v3 | 3 51 3 225 f3 c51 v3 | 3 12 3 227 f3 c12 v3 | 1 12 3 228 f1 c12 v3 | 3 01 3 230 f3 c01 v3 | 1 12 4 234 f1 c12 v4 | 3 12 2 238 f3 c12 v2 | 3 32 3 241 f3 c32 v3 | 1 01 3 242 f1 c01 v3 | 3 12 3 244 f3 c12 v3 | 1 12 2 245 f1 c12 v2 | 3 12 3 252 f3 c12 v3 | 1 12 3 254 f1 c12 v3 | 3 12 3 256 f3 c12 v3 | 1 62 3 267 f1 c62 v3 | 1 12 2 269 f1 c12 v2 | 1 12 1 278 f1 c12 v1 | 3 42 3 282 f3 c42 v3 | 1 01 3 287 f1 c01 v3 | 3 12 3 289 f3 c12 v3 | 1 12 2 291 f1 c12 v2 | 3 12 3 296 f3 c12 v3 | 1 31 3 301 f1 c31 v3 | 3 51 3 305 f3 c51 v3 | 1 12 3 309 f1 c12 v3 | 3 12 3 311 f3 c12 v3 | 1 12 3 313 f1 c12 v3 | 3 12 3 316 f3 c12 v3 | 1 12 3 319 f1 c12 v3 | 3 12 3 322 f3 c12 v3 | 1 12 3 323 f1 c12 v3 | 3 12 3 324 f3 c12 v3 | 1 12 3 326 f1 c12 v3 | 3 32 3 329 f3 c32 v3 | 1 01 3 331 f1 c01 v3 | 1 12 3 333 f1 c12 v3 | 3 11 2 338 f3 c11 v2 | 1 12 3 342 f1 c12 v3 | 3 12 3 344 f3 c12 v3 | 1 12 3 347 f1 c12 v3 | 3 12 3 349 f3 c12 v3 | 1 12 3 351 f1 c12 v3 | 3 12 3 352 f3 c12 v3 | 1 62 3 354 f1 c62 v3 | 3 62 2 356 f3 c62 v2 | 1 12 3 362 f1 c12 v3 | 3 12 3 367 f3 c12 v3 | 1 12 3 370 f1 c12 v3 | 3 12 3 371 f3 c12 v3 | 1 12 2 373 f1 c12 v2 | 3 12 2 378 f3 c12 v2 | 1 12 2 381 f1 c12 v2 | 3 12 3 382 f3 c12 v3 | 1 12 3 389 f1 c12 v3 | 3 12 3 392 f3 c12 v3 | 3 42 3 394 f3 c42 v3 | 1 01 3 396 f1 c01 v3 | 3 11 3 398 f3 c11 v3 | 1 12 3 401 f1 c12 v3 | 3 12 3 403 f3 c12 v3 | 1 12 3 405 f1 c12 v3 | 3 12 2 406 f3 c12 v2 | 1 12 3 409 f1 c12 v3 | 3 12 3 412 f3 c12 v3 | 1 12 3 414 f1 c12 v3 | 3 12 3 416 f3 c12 v3 | 3 62 2 417 f3 c62 v2 | 1 62 2 419 f1 c62 v2 | 3 13 2 422 f3 c13 v2 | 3 32 3 426 f3 c32 v3 | 3 32 3 430 f3 c32 v3 | 1 01 3 431 f1 c01 v3 | 1 01 3 434 f1 c01 v3 | 3 12 3 438 f3 c12 v3 | 1 12 3 439 f1 c12 v3 | 3 12 3 440 f3 c12 v3 | 1 12 3 441 f1 c12 v3 | 3 12 3 443 f3 c12 v3 | 1 12 3 449 f1 c12 v3 | 3 11 2 450 f3 c11 v2 | 3 12 2 455 f3 c12 v2 | 1 62 2 457 f1 c62 v2 | 3 12 3 462 f3 c12 v3 | 1 12 2 463 f1 c12 v2 | 3 12 2 467 f3 c12 v2 | 1 62 2 469 f1 c62 v2 | 3 12 3 473 f3 c12 v3 | 1 12 3 477 f1 c12 v3 | 3 12 3 479 f3 c12 v3 | 1 11 3 490 f1 c11 v3 | 3 11 3 492 f3 c11 v3 | 3 12 3 495 f3 c12 v3 | 1 62 2 514 f1 c62 v2 | 3 11 2 517 f3 c11 v2 | 1 62 2 524 f1 c62 v2 | 1 12 2 527 f1 c12 v2 | 3 12 3 530 f3 c12 v3 | 1 62 2 534 f1 c62 v2 | 3 62 2 537 f3 c62 v2 | 3 22 2 539 f3 c22 v2 | 1 62 2 544 f1 c62 v2 | 3 12 3 547 f3 c12 v3 | 1 12 3 548 f1 c12 v3 | 3 12 3 549 f3 c12 v3 | 1 12 2 553 f1 c12 v2 | 9 99 9 561 f9 c99 v9 | | 1 62 2 564 f1 c62 v2 | 3 12 3 569 f3 c12 v3 | 1 12 2 575 f1 c12 v2 | 3 13 4 577 f3 c13 v4 | 3 12 3 585 f3 c12 v3 | 1 62 2 589 f1 c62 v2 | 3 32 3 591 f3 c32 v3 | 1 01 3 593 f1 c01 v3 | 1 12 3 595 f1 c12 v3 | 3 12 3 599 f3 c12 v3 | 9 99 9 603 f9 c99 v9
Note 11. Reading the Family Interaction Datasets as Two-Level Formal Languages : 3
In the ideal situation a language ought to have a grammar. It has often been observed that a grammar is tantamount to a rational theory of the empirical language, subsuming the infinite variety of a linguistic corpus, passed or present or prospective, under the capitation of a finite mentality.
In the empirical situation, however, always in the beginning far from ideal, the grammar of a language is a datum that awaits discovery at a future date.
On the other hand, the experience that a finite mentality has actually experienced at any given time is of necessity a finite experience, and so it is possible to organize the experienced language in a finite way, even though it is likely to be far away from the ideal grammar, namely, in the form of finite state transition graphs (FST graphs). In this way, a k-level formal language can be recorded as it enters experience in the form of k FST graphs, one graph for each level of the language.
In particular, it is especially feasible under real-time conditions to keep track of the language actually experienced by means of FST trees. A k-level formal language can be recorded as it comes into experience by means of a k-tuple of FST trees, using one tree to rule each level.
Among the possible variety of data models, one has the option of using either fixed order or free order FST trees. In the case of a 2-FL we get a pair of FST trees that may be referred to as the lexical and the literal trees.
At this point, though, it is probably best to return to our concrete datasets.
I will next illustrate how the family interaction data looks when arranged as a pair of free order FST's. For the sake of comparison, and also because the first dataset is somewhat amorphous from this point of view, I will list here a second dataset, a father-child dyad from the same family, with what I think to be the same child, but I no longer have the corresponding demographic data.
Family Interaction Analysis • Abbreviated Dataset 2
Family Interaction Analysis. Abbreviated Dataset 2 ------------------------------------------------------------------------ TRIAL FAMILY SESSION FOCUS OBSERVER FAMILY MEMBERS MO/DY/YR HR:MN 1 MXYZ 5 1 22 12000000 12/03/86 13:34 ------------------------------------------------------------------------ | 9 99 9 0 | | 1 12 2 2 | 2 12 3 4 | 1 62 2 8 | 2 12 3 11 | 1 62 2 13 | 1 12 3 15 | 2 12 3 21 | 2 32 3 24 | 1 12 3 29 | 1 01 3 31 | 2 73 3 38 | 2 12 3 41 | 1 12 3 42 | 2 12 3 44 | 1 12 2 50 | 2 12 3 52 | 2 32 3 62 | 1 53 3 65 | 1 13 4 70 | 1 62 3 73 | 2 12 3 76 | 9 99 9 83 | | 1 62 2 85 | 1 12 3 88 | 2 12 3 90 | 1 12 3 91 | 2 12 3 93 | 1 12 2 97 | 2 12 2 99 | 1 12 2 102 | 9 99 9 109 | | 1 12 2 112 | 2 62 2 115 | 1 12 2 117 | 2 12 3 120 | 2 13 4 123 | 1 12 2 126 | 1 62 2 128 | 1 12 2 131 | 2 12 3 133 | 1 12 3 135 | 2 12 3 139 | 1 32 4 147 | 2 01 3 152 | 1 12 3 156 | 2 12 3 158 | 1 12 3 159 | 2 12 3 162 | 1 32 3 164 | 2 12 3 167 | 1 12 4 173 | 2 12 3 179 | 1 12 3 182 | 2 32 3 187 | 1 01 3 189 | 2 32 3 193 | 1 01 2 195 | 1 12 2 199 | 2 32 3 202 | 1 01 3 205 | 2 12 3 209 | 1 62 2 210 | 9 99 9 218 | | 1 62 2 222 | 1 12 2 225 | 1 12 1 229 | 2 32 3 235 | 1 62 2 239 | 2 13 4 244 | 2 32 3 253 | 1 12 3 254 | 1 01 3 258 | 2 11 3 259 | 1 62 2 263 | 2 12 3 265 | 1 12 2 267 | 2 32 3 270 | 1 01 3 274 | 1 12 3 278 | 2 32 3 282 | 1 01 3 286 | 2 12 3 287 | 1 12 2 289 | 2 11 3 292 | 1 12 3 295 | 2 12 3 299 | 1 12 3 303 | 2 12 2 305 | 1 73 4 313 | 1 12 4 320 | 2 12 3 322 | 1 12 4 323 | 2 12 3 326 | 1 12 4 328 | 2 62 3 332 | 1 12 3 334 | 2 12 3 338 | 1 32 3 339 | 2 12 3 346 | 2 01 3 352 | 1 62 2 355 | 9 99 9 360 | | 1 42 3 364 | 2 12 2 369 | 2 01 3 371 | 1 12 3 375 | 1 32 3 379 | 2 32 3 382 | 1 12 3 385 | 2 12 3 388 | 1 12 3 390 | 2 12 3 392 | 1 22 3 396 | 2 32 3 405 | 1 01 3 409 | 2 12 3 412 | 2 32 3 417 | 1 01 3 419 | 2 12 3 424 | 2 32 3 427 | 1 01 3 429 | 9 99 9 436 | | 1 62 2 437 | 2 12 2 443 | 1 12 2 445 | 2 32 3 448 | 1 01 3 449 | 2 92 3 455 | 1 62 2 462 | 1 12 2 465 | 2 12 3 467 | 1 12 3 469 | 2 12 3 471 | 1 62 3 472 | 2 12 3 474 | 1 12 2 477 | 9 99 9 485 | | 1 62 2 489 | 2 13 4 496 | 1 12 3 499 | 2 12 3 502 | 1 12 2 509 | 2 12 3 513 | 1 42 3 514 | 2 01 3 518 | 1 12 3 523 | 1 62 2 527 | 1 12 2 531 | 2 12 3 539 | 1 62 2 541 | 1 12 2 544 | 2 12 3 547 | 1 12 2 550 | 2 12 3 554 | 1 12 3 557 | 2 12 2 564 | 1 12 3 569 | 2 12 3 573 | 1 12 3 574 | 2 12 3 575 | 1 12 3 577 | 2 12 3 579 | 1 62 3 594 | 9 99 9 597
Here is the literal level of Dataset 2 presented as a free order FST in outline form. The numbers at the right give the frequencies with which the corresponding nodes of the tree are observed or traversed during the session. Reading this display one can see that there are seven distinct strands at the second level of the corresponding 2-FL:
- 4 strands begin with 1_62_2, Child vocalizes with positive affect.
- 2 strands begin with 1_12_2, Child talks with positive affect.
- 1 strand begins with 1_42_3, Child ambiguously commands with neutral affect.
| dataset_2 7 | 1_62_2 4 | 1_12_3 1 | 2_12_3 1 | 1_12_3 1 | 2_12_3 1 | 1_12_2 1 | 2_12_2 1 | 1_12_2 1 | * 1 | 1_12_2 1 | 1_12_1 1 | 2_32_3 1 | 1_62_2 1 | 2_13_4 1 | 2_32_3 1 | 1_12_3 1 | 1_01_3 1 | 2_11_3 1 | 1_62_2 1 | 2_12_3 1 | 1_12_2 1 | 2_32_3 1 | 1_01_3 1 | 1_12_3 1 | 2_32_3 1 | 1_01_3 1 | 2_12_3 1 | 1_12_2 1 | 2_11_3 1 | 1_12_3 1 | 2_12_3 1 | 1_12_3 1 | 2_12_2 1 | 1_73_4 1 | 1_12_4 1 | 2_12_3 1 | 1_12_4 1 | 2_12_3 1 | 1_12_4 1 | 2_62_3 1 | 1_12_3 1 | 2_12_3 1 | 1_32_3 1 | 2_12_3 1 | 2_01_3 1 | 1_62_2 1 | * 1 | 2_12_2 1 | 1_12_2 1 | 2_32_3 1 | 1_01_3 1 | 2_92_3 1 | 1_62_2 1 | 1_12_2 1 | 2_12_3 1 | 1_12_3 1 | 2_12_3 1 | 1_62_3 1 | 2_12_3 1 | 1_12_2 1 | * 1 | 2_13_4 1 | 1_12_3 1 | 2_12_3 1 | 1_12_2 1 | 2_12_3 1 | 1_42_3 1 | 2_01_3 1 | 1_12_3 1 | 1_62_2 1 | 1_12_2 1 | 2_12_3 1 | 1_62_2 1 | 1_12_2 1 | 2_12_3 1 | 1_12_2 1 | 2_12_3 1 | 1_12_3 1 | 2_12_2 1 | 1_12_3 1 | 2_12_3 1 | 1_12_3 1 | 2_12_3 1 | 1_12_3 1 | 2_12_3 1 | 1_62_3 1 | * 1 | 1_42_3 1 | 2_12_2 1 | 2_01_3 1 | 1_12_3 1 | 1_32_3 1 | 2_32_3 1 | 1_12_3 1 | 2_12_3 1 | 1_12_3 1 | 2_12_3 1 | 1_22_3 1 | 2_32_3 1 | 1_01_3 1 | 2_12_3 1 | 2_32_3 1 | 1_01_3 1 | 2_12_3 1 | 2_32_3 1 | 1_01_3 1 | * 1 | 1_12_2 2 | 2_12_3 1 | 1_62_2 1 | 2_12_3 1 | 1_62_2 1 | 1_12_3 1 | 2_12_3 1 | 2_32_3 1 | 1_12_3 1 | 1_01_3 1 | 2_73_3 1 | 2_12_3 1 | 1_12_3 1 | 2_12_3 1 | 1_12_2 1 | 2_12_3 1 | 2_32_3 1 | 1_53_3 1 | 1_13_4 1 | 1_62_3 1 | 2_12_3 1 | * 1 | 2_62_2 1 | 1_12_2 1 | 2_12_3 1 | 2_13_4 1 | 1_12_2 1 | 1_62_2 1 | 1_12_2 1 | 2_12_3 1 | 1_12_3 1 | 2_12_3 1 | 1_32_4 1 | 2_01_3 1 | 1_12_3 1 | 2_12_3 1 | 1_12_3 1 | 2_12_3 1 | 1_32_3 1 | 2_12_3 1 | 1_12_4 1 | 2_12_3 1 | 1_12_3 1 | 2_32_3 1 | 1_01_3 1 | 2_32_3 1 | 1_01_2 1 | 1_12_2 1 | 2_32_3 1 | 1_01_3 1 | 2_12_3 1 | 1_62_2 1 | * 1
Note 12. Reading the Family Interaction Datasets as Two-Level Formal Languages : 4
Here is a suggestion of how the literal levels of the two family interaction datasets look when presented as free order finite state transition trees.
Dataset 1
@--[1_12_3]--[3_62_3]--[3_32_3]--[1_62_2]--[3_32_3]--[1_62_2]--[3_13_2] | | | `-----[3_12_3] | `--[3_11_2]--[1_12_2]--[3_12_3]--[1_12_2]--[......]--[3_12_3]--[1_12_2]--[1_62_2] | `--[1_12_2]--[3_12_3]--[1_32_3]--[3_51_3]--[......]--[1_12_3]--[3_12_3]--[1_12_2] | `--[1_62_2]--[3_12_3]--[1_12_2]--[3_13_4]--[......]--[1_01_3]--[1_12_3]--[3_12_3] | `--[3_12_3]--[1_12_3]--[3_42_3]--[3_32_3]--[1_01_3]--[1_42_3]--[3_01_3] | `--[3_11_3]--[1_12_3]--[3_12_2]--[1_12_2]--[3_12_3]--[1_12_2]
Dataset 2
@--[1_62_2]--[1_12_3]--[2_12_3]--[1_12_3]--[2_12_3]--[1_12_2]--[2_12_2]--[1_12_2] | | | `-----[1_12_2]--[1_12_1]--[2_32_3]--[......]--[2_12_3]--[2_01_3]--[1_62_2] | | | `-----[2_12_2]--[1_12_2]--[2_32_3]--[......]--[1_62_3]--[2_12_3]--[1_12_2] | | | `-----[2_13_4]--[1_12_3]--[2_12_3]--[......]--[1_12_3]--[2_12_3]--[1_62_3] | `--[1_42_3]--[2_12_2]--[2_01_3]--[1_12_3]--[......]--[2_12_3]--[2_32_3]--[1_01_3] | `--[1_12_2]--[2_12_3]--[1_62_2]--[2_12_3]--[......]--[1_13_4]--[1_62_3]--[2_12_3] | `-----[2_62_2]--[1_12_2]--[2_12_3]--[......]--[1_01_3]--[2_12_3]--[1_62_2]
Note 13. Reading the Family Interaction Datasets as Two-Level Formal Languages : 5
I have mentioned the fact that each way of looking at a dataset amounts to an enabling hypothesis to the effect that something interesting or useful might be seen by looking at the data in just that way.
In parsing the family interaction datasets as 2-level formal languages, I made the pure hypothesis that the resting episodes were somehow more significant than others, in the sense that I interpreted them to mark the "commas", the "periods", or the "ends of strands" at the second level of the formal texts. One might speculate along the lines of classical learning theory, as in Thorndike's "law of effect", that these pauses are refreshing, rewarding, and thus reinforcing, or else along the lines of Berlyne's information hungry animal that the rests of the score requite the players with information about the structure of the interpersonal music in progress between them.
But if one gets to thinking in this deliberate, goal-oriented, intentional, motivated, or purposive fashion, then one might just as well recognize many other subsets of episodic codes as representing the potential goals of either one or both players in the game. Similar considerations would apply to the choice of negative reinforcers, "deinforcements", or "disincentives", types of episodes that one or both participants seek to avoid, to escape, or to minimize. </pre>
Note 14. Reading the Family Interaction Datasets as Two-Level Formal Languages : 6
Qualitative Sequential Datasets as Two-Level Formal Languages (cont.)
I would like next to view the family interaction datasets as fixed order finite state transition trees. To begin, let's view Dataset 1, one paradigm's way of codifying ten minutes from the life of a mother and a child, in respect of its 2-tuple, pairwise, or 2nd-order transitions from each episode of coded activity to the next.
This time around, I will parse the code of each episode into parts that codify separately the agent, the content, and the affective valence of the activity, reducing the time data to simple indications of sequential order, the episode numbers of the coded activities that fill the observational sessions.
Family Interaction Analysis • Dataset 1 • Pairwise Transitions • Numbered Episodes
Here are the beginning and end of Dataset 1 under this view:
| Family Interaction Analysis | Abbreviated Dataset 1 | Pairwise Transitions | Numbered Episodes | | F9 C99 V9 f3 c12 v3 n1 | F3 C12 V3 f1 c12 v3 n2 | F1 C12 V3 f3 c42 v3 n3 | F3 C42 V3 f3 c32 v3 n4 | F3 C32 V3 f1 c01 v3 n5 | F1 C01 V3 f1 c42 v3 n6 | F1 C42 V3 f3 c01 v3 n7 | F3 C01 V3 f9 c99 v9 n8 | | F9 C99 V9 f3 c11 v3 n9 | F3 C11 V3 f1 c12 v3 n10 | F1 C12 V3 f3 c12 v2 n11 | F3 C12 V2 f1 c12 v2 n12 | F1 C12 V2 f3 c12 v3 n13 | F3 C12 V3 f1 c12 v2 n14 | F1 C12 V2 f9 c99 v9 n15 | | F9 C99 V9 f1 c12 v3 n16 | F1 C12 V3 f3 c62 v3 n17 | F3 C62 V3 f3 c32 v3 n18 | F3 C32 V3 f1 c62 v2 n19 | F1 C62 V2 f3 c32 v3 n20 | F3 C32 V3 f1 c62 v2 n21 | F1 C62 V2 f3 c13 v2 n22 | F3 C13 V2 f9 c99 v9 n23 | | F9 C99 V9 f1 c12 v3 n24 | F1 C12 V3 f3 c12 v3 n25 | F3 C12 V3 f9 c99 v9 n26 | | ... | | F9 C99 V9 f1 c62 v2 n165 | F1 C62 V2 f3 c12 v3 n166 | F3 C12 V3 f1 c12 v2 n167 | F1 C12 V2 f3 c13 v4 n168 | F3 C13 V4 f3 c12 v3 n169 | F3 C12 V3 f1 c62 v2 n170 | F1 C62 V2 f3 c32 v3 n171 | F3 C32 V3 f1 c01 v3 n172 | F1 C01 V3 f1 c12 v3 n173 | F1 C12 V3 f3 c12 v3 n174 | F3 C12 V3 f9 c99 v9 n175
Here I am using capitalized code to distinguish the initial element of each pairwise transition.
Family Interaction Analysis • Dataset 1 • Pairwise Transition Tree in Outline Form
Folding in a dollop or three of syntactic syrup, the pairwise transition tree cooks up like this:
| Dataset 1. Pairwise Transition Tree in Outline Form | | pairwise_transitions 175 1.00 0.000 | from 175 1.00 0.000 | F3_mother 85 0.49 0.506 | C12_talk 51 0.60 0.442 | V3_neutral_affect 43 0.84 0.208 | to 43 1.00 0.000 | f1_child 37 0.86 0.187 | c12_talk 29 0.78 0.275 | v3_neutral_affect 19 0.66 0.400 | at 19 1.00 0.000 | n2 1 0.05 0.224 | * 1 1.00 0.000 | n52 1 0.05 0.224 | * 1 1.00 0.000 | n62 1 0.05 0.224 | * 1 1.00 0.000 | n71 1 0.05 0.224 | * 1 1.00 0.000 | n85 1 0.05 0.224 | * 1 1.00 0.000 | n87 1 0.05 0.224 | * 1 1.00 0.000 | n89 1 0.05 0.224 | * 1 1.00 0.000 | n91 1 0.05 0.224 | * 1 1.00 0.000 | n98 1 0.05 0.224 | * 1 1.00 0.000 | n100 1 0.05 0.224 | * 1 1.00 0.000 | n106 1 0.05 0.224 | * 1 1.00 0.000 | n112 1 0.05 0.224 | * 1 1.00 0.000 | n119 1 0.05 0.224 | * 1 1.00 0.000 | n123 1 0.05 0.224 | * 1 1.00 0.000 | n133 1 0.05 0.224 | * 1 1.00 0.000 | n135 1 0.05 0.224 | * 1 1.00 0.000 | n137 1 0.05 0.224 | * 1 1.00 0.000 | n146 1 0.05 0.224 | * 1 1.00 0.000 | n161 1 0.05 0.224 | * 1 1.00 0.000 | v2_positive_affect 10 0.34 0.530 | at 10 1.00 0.000 | n14 1 0.10 0.332 | * 1 1.00 0.000 | n30 1 0.10 0.332 | * 1 1.00 0.000 | n40 1 0.10 0.332 | * 1 1.00 0.000 | n54 1 0.10 0.332 | * 1 1.00 0.000 | n69 1 0.10 0.332 | * 1 1.00 0.000 | n79 1 0.10 0.332 | * 1 1.00 0.000 | n108 1 0.10 0.332 | * 1 1.00 0.000 | n142 1 0.10 0.332 | * 1 1.00 0.000 | n163 1 0.10 0.332 | * 1 1.00 0.000 | n167 1 0.10 0.332 | * 1 1.00 0.000 | c32_command 1 0.03 0.141 | v3_neutral_affect 1 1.00 0.000 | at 1 1.00 0.000 | n59 1 1.00 0.000 | * 1 1.00 0.000 | c62_vocal 5 0.14 0.390 | v2_positive_affect 3 0.60 0.442 | at 3 1.00 0.000 | n151 1 0.33 0.528 | * 1 1.00 0.000 | n156 1 0.33 0.528 | * 1 1.00 0.000 | n170 1 0.33 0.528 | * 1 1.00 0.000 | v3_neutral_affect 2 0.40 0.529 | at 2 1.00 0.000 | n73 1 0.50 0.500 | * 1 1.00 0.000 | n102 1 0.50 0.500 | * 1 1.00 0.000 | c31_request 1 0.03 0.141 | v3_neutral_affect 1 1.00 0.000 | at 1 1.00 0.000 | n81 1 1.00 0.000 | * 1 1.00 0.000 | c11_positive_verbal 1 0.03 0.141 | v3_neutral_affect 1 1.00 0.000 | at 1 1.00 0.000 | n148 1 1.00 0.000 | * 1 1.00 0.000 | f9_null 2 0.05 0.206 | c99_null 2 1.00 0.000 | v9_null 2 1.00 0.000 | at 2 1.00 0.000 | n26 1 0.50 0.500 | * 1 1.00 0.000 | n175 1 0.50 0.500 | * 1 1.00 0.000 | f3_mother 4 0.09 0.319 | c32_command 1 0.25 0.500 | v3_neutral_affect 1 1.00 0.000 | at 1 1.00 0.000 | n45 1 1.00 0.000 | * 1 1.00 0.000 | c01_comply 1 0.25 0.500 | v3_neutral_affect 1 1.00 0.000 | at 1 1.00 0.000 | n49 1 1.00 0.000 | * 1 1.00 0.000 | c42_command_ambiguous 1 0.25 0.500 | v3_neutral_affect 1 1.00 0.000 | at 1 1.00 0.000 | n114 1 1.00 0.000 | * 1 1.00 0.000 | c62_vocal 1 0.25 0.500 | v2_positive_affect 1 1.00 0.000 | at 1 1.00 0.000 | n125 1 1.00 0.000 | * 1 1.00 0.000 | V2_positive_affect 8 0.16 0.419 | to 8 1.00 0.000 | f1_child 7 0.88 0.169 | c12_talk 4 0.57 0.461 | v2_positive_affect 3 0.75 0.311 | at 3 1.00 0.000 | n12 1 0.33 0.528 | * 1 1.00 0.000 | n35 1 0.33 0.528 | * 1 1.00 0.000 | n110 1 0.33 0.528 | * 1 1.00 0.000 | v3_neutral_affect 1 0.25 0.500 | at 1 1.00 0.000 | n121 1 1.00 0.000 | * 1 1.00 0.000 | c62_vocal 3 0.43 0.524 | v2_positive_affect 3 1.00 0.000 | at 3 1.00 0.000 | n43 1 0.33 0.528 | * 1 1.00 0.000 | n140 1 0.33 0.528 | * 1 1.00 0.000 | n144 1 0.33 0.528 | * 1 1.00 0.000 | f3_mother 1 0.13 0.375 | c32_command 1 1.00 0.000 | v3_neutral_affect 1 1.00 0.000 | at 1 1.00 0.000 | n66 1 1.00 0.000 | * 1 1.00 0.000 | C42_command_ambiguous 3 0.04 0.170 | V3_neutral_affect 3 1.00 0.000 | to 3 1.00 0.000 | f1_child 2 0.67 0.390 | c01_comply 2 1.00 0.000 | v3_neutral_affect 2 1.00 0.000 | at 2 1.00 0.000 | n77 1 0.50 0.500 | * 1 1.00 0.000 | n115 1 0.50 0.500 | * 1 1.00 0.000 | f3_mother 1 0.33 0.528 | c32_command 1 1.00 0.000 | v3_neutral_affect 1 1.00 0.000 | at 1 1.00 0.000 | n4 1 1.00 0.000 | * 1 1.00 0.000 | C32_command 9 0.11 0.343 | V3_neutral_affect 9 1.00 0.000 | to 9 1.00 0.000 | f1_child 8 0.89 0.151 | c01_comply 6 0.75 0.311 | v3_neutral_affect 6 1.00 0.000 | at 6 1.00 0.000 | n5 1 0.17 0.431 | * 1 1.00 0.000 | n46 1 0.17 0.431 | * 1 1.00 0.000 | n67 1 0.17 0.431 | * 1 1.00 0.000 | n93 1 0.17 0.431 | * 1 1.00 0.000 | n130 1 0.17 0.431 | * 1 1.00 0.000 | n172 1 0.17 0.431 | * 1 1.00 0.000 | c62_vocal 2 0.25 0.500 | v2_positive_affect 2 1.00 0.000 | at 2 1.00 0.000 | n19 1 0.50 0.500 | * 1 1.00 0.000 | n21 1 0.50 0.500 | * 1 1.00 0.000 | f3_mother 1 0.11 0.352 | c32_command 1 1.00 0.000 | v3_neutral_affect 1 1.00 0.000 | at 1 1.00 0.000 | n129 1 1.00 0.000 | * 1 1.00 0.000 | C01_comply 3 0.04 0.170 | V3_neutral_affect 3 1.00 0.000 | to 3 1.00 0.000 | f1_child 2 0.67 0.390 | c12_talk 2 1.00 0.000 | v3_neutral_affect 1 0.50 0.500 | at 1 1.00 0.000 | n50 1 1.00 0.000 | * 1 1.00 0.000 | v4_negative_affect 1 0.50 0.500 | at 1 1.00 0.000 | n64 1 1.00 0.000 | * 1 1.00 0.000 | f9_null 1 0.33 0.528 | c99_null 1 1.00 0.000 | v9_null 1 1.00 0.000 | at 1 1.00 0.000 | n8 1 1.00 0.000 | * 1 1.00 0.000 | C11_positive_verbal 7 0.08 0.297 | V2_positive_affect 4 0.57 0.461 | to 4 1.00 0.000 | f1_child 3 0.75 0.311 | c12_talk 2 0.67 0.390 | v2_positive_affect 1 0.50 0.500 | at 1 1.00 0.000 | n28 1 1.00 0.000 | * 1 1.00 0.000 | v3_neutral_affect 1 0.50 0.500 | at 1 1.00 0.000 | n96 1 1.00 0.000 | * 1 1.00 0.000 | c62_vocal 1 0.33 0.528 | v2_positive_affect 1 1.00 0.000 | at 1 1.00 0.000 | n153 1 1.00 0.000 | * 1 1.00 0.000 | f3_mother 1 0.25 0.500 | c12_talk 1 1.00 0.000 | v2_positive_affect 1 1.00 0.000 | at 1 1.00 0.000 | n139 1 1.00 0.000 | * 1 1.00 0.000 | V3_neutral_affect 3 0.43 0.524 | to 3 1.00 0.000 | f1_child 2 0.67 0.390 | c12_talk 2 1.00 0.000 | v3_neutral_affect 2 1.00 0.000 | at 2 1.00 0.000 | n10 1 0.50 0.500 | * 1 1.00 0.000 | n117 1 0.50 0.500 | * 1 1.00 0.000 | f3_mother 1 0.33 0.528 | c12_talk 1 1.00 0.000 | v3_neutral_affect 1 1.00 0.000 | at 1 1.00 0.000 | n150 1 1.00 0.000 | * 1 1.00 0.000 | C62_vocal 5 0.06 0.240 | V2_positive_affect 4 0.80 0.258 | to 4 1.00 0.000 | f1_child 3 0.75 0.311 | c62_vocal 2 0.67 0.390 | v2_positive_affect 2 1.00 0.000 | at 2 1.00 0.000 | n32 1 0.50 0.500 | * 1 1.00 0.000 | n126 1 0.50 0.500 | * 1 1.00 0.000 | c12_talk 1 0.33 0.528 | v3_neutral_affect 1 1.00 0.000 | at 1 1.00 0.000 | n104 1 1.00 0.000 | * 1 1.00 0.000 | f3_mother 1 0.25 0.500 | c22_tease 1 1.00 0.000 | v2_positive_affect 1 1.00 0.000 | at 1 1.00 0.000 | n158 1 1.00 0.000 | * 1 1.00 0.000 | V3_neutral_affect 1 0.20 0.464 | to 1 1.00 0.000 | f3_mother 1 1.00 0.000 | c32_command 1 1.00 0.000 | v3_neutral_affect 1 1.00 0.000 | at 1 1.00 0.000 | n18 1 1.00 0.000 | * 1 1.00 0.000 | C13_negative_verbal 3 0.04 0.170 | V2_positive_affect 2 0.67 0.390 | to 2 1.00 0.000 | f9_null 1 0.50 0.500 | c99_null 1 1.00 0.000 | v9_null 1 1.00 0.000 | at 1 1.00 0.000 | n23 1 1.00 0.000 | * 1 1.00 0.000 | f3_mother 1 0.50 0.500 | c32_command 1 1.00 0.000 | v3_neutral_affect 1 1.00 0.000 | at 1 1.00 0.000 | n128 1 1.00 0.000 | * 1 1.00 0.000 | V4_negative_affect 1 0.33 0.528 | to 1 1.00 0.000 | f3_mother 1 1.00 0.000 | c12_talk 1 1.00 0.000 | v3_neutral_affect 1 1.00 0.000 | at 1 1.00 0.000 | n169 1 1.00 0.000 | * 1 1.00 0.000 | C51_agree 3 0.04 0.170 | V3_neutral_affect 3 1.00 0.000 | to 3 1.00 0.000 | f3_mother 2 0.67 0.390 | c12_talk 2 1.00 0.000 | v3_neutral_affect 2 1.00 0.000 | at 2 1.00 0.000 | n48 1 0.50 0.500 | * 1 1.00 0.000 | n61 1 0.50 0.500 | * 1 1.00 0.000 | f1_child 1 0.33 0.528 | c12_talk 1 1.00 0.000 | v3_neutral_affect 1 1.00 0.000 | at 1 1.00 0.000 | n83 1 1.00 0.000 | * 1 1.00 0.000 | C22_tease 1 0.01 0.075 | V2_positive_affect 1 1.00 0.000 | to 1 1.00 0.000 | f1_child 1 1.00 0.000 | c62_vocal 1 1.00 0.000 | v2_positive_affect 1 1.00 0.000 | at 1 1.00 0.000 | n159 1 1.00 0.000 | * 1 1.00 0.000 | F1_child 83 0.47 0.510 | C12_talk 51 0.61 0.432 | V3_neutral_affect 30 0.59 0.450 | to 30 1.00 0.000 | f3_mother 30 1.00 0.000 | c12_talk 24 0.80 0.258 | v3_neutral_affect 22 0.92 0.115 | at 22 1.00 0.000 | n25 1 0.05 0.203 | * 1 1.00 0.000 | n51 1 0.05 0.203 | * 1 1.00 0.000 | n53 1 0.05 0.203 | * 1 1.00 0.000 | n72 1 0.05 0.203 | * 1 1.00 0.000 | n84 1 0.05 0.203 | * 1 1.00 0.000 | n86 1 0.05 0.203 | * 1 1.00 0.000 | n88 1 0.05 0.203 | * 1 1.00 0.000 | n90 1 0.05 0.203 | * 1 1.00 0.000 | n97 1 0.05 0.203 | * 1 1.00 0.000 | n99 1 0.05 0.203 | * 1 1.00 0.000 | n101 1 0.05 0.203 | * 1 1.00 0.000 | n105 1 0.05 0.203 | * 1 1.00 0.000 | n107 1 0.05 0.203 | * 1 1.00 0.000 | n113 1 0.05 0.203 | * 1 1.00 0.000 | n118 1 0.05 0.203 | * 1 1.00 0.000 | n122 1 0.05 0.203 | * 1 1.00 0.000 | n124 1 0.05 0.203 | * 1 1.00 0.000 | n134 1 0.05 0.203 | * 1 1.00 0.000 | n136 1 0.05 0.203 | * 1 1.00 0.000 | n147 1 0.05 0.203 | * 1 1.00 0.000 | n162 1 0.05 0.203 | * 1 1.00 0.000 | n174 1 0.05 0.203 | * 1 1.00 0.000 | v2_positive_affect 2 0.08 0.299 | at 2 1.00 0.000 | n11 1 0.50 0.500 | * 1 1.00 0.000 | n120 1 0.50 0.500 | * 1 1.00 0.000 | c62_vocal 1 0.03 0.164 | v3_neutral_affect 1 1.00 0.000 | at 1 1.00 0.000 | n17 1 1.00 0.000 | * 1 1.00 0.000 | c01_comply 1 0.03 0.164 | v3_neutral_affect 1 1.00 0.000 | at 1 1.00 0.000 | n63 1 1.00 0.000 | * 1 1.00 0.000 | c32_command 1 0.03 0.164 | v3_neutral_affect 1 1.00 0.000 | at 1 1.00 0.000 | n92 1 1.00 0.000 | * 1 1.00 0.000 | c11_positive_verbal 2 0.07 0.260 | v2_positive_affect 2 1.00 0.000 | at 2 1.00 0.000 | n95 1 0.50 0.500 | * 1 1.00 0.000 | n138 1 0.50 0.500 | * 1 1.00 0.000 | c42_command_ambiguous 1 0.03 0.164 | v3_neutral_affect 1 1.00 0.000 | at 1 1.00 0.000 | n3 1 1.00 0.000 | * 1 1.00 0.000 | V2_positive_affect 19 0.37 0.531 | to 19 1.00 0.000 | f3_mother 12 0.63 0.419 | c12_talk 10 0.83 0.219 | v3_neutral_affect 7 0.70 0.360 | at 7 1.00 0.000 | n13 1 0.14 0.401 | * 1 1.00 0.000 | n29 1 0.14 0.401 | * 1 1.00 0.000 | n58 1 0.14 0.401 | * 1 1.00 0.000 | n70 1 0.14 0.401 | * 1 1.00 0.000 | n80 1 0.14 0.401 | * 1 1.00 0.000 | n111 1 0.14 0.401 | * 1 1.00 0.000 | n155 1 0.14 0.401 | * 1 1.00 0.000 | v2_positive_affect 3 0.30 0.521 | at 3 1.00 0.000 | n34 1 0.33 0.528 | * 1 1.00 0.000 | n109 1 0.33 0.528 | * 1 1.00 0.000 | n143 1 0.33 0.528 | * 1 1.00 0.000 | c62_vocal 1 0.08 0.299 | v2_positive_affect 1 1.00 0.000 | at 1 1.00 0.000 | n31 1 1.00 0.000 | * 1 1.00 0.000 | c13_negative_verbal 1 0.08 0.299 | v4_negative_affect 1 1.00 0.000 | at 1 1.00 0.000 | n168 1 1.00 0.000 | * 1 1.00 0.000 | f9_null 2 0.11 0.342 | c99_null 2 1.00 0.000 | v9_null 2 1.00 0.000 | at 2 1.00 0.000 | n15 1 0.50 0.500 | * 1 1.00 0.000 | n164 1 0.50 0.500 | * 1 1.00 0.000 | f1_child 5 0.26 0.507 | c62_vocal 4 0.80 0.258 | v2_positive_affect 4 1.00 0.000 | at 4 1.00 0.000 | n36 1 0.25 0.500 | * 1 1.00 0.000 | n38 1 0.25 0.500 | * 1 1.00 0.000 | n41 1 0.25 0.500 | * 1 1.00 0.000 | n55 1 0.25 0.500 | * 1 1.00 0.000 | c12_talk 1 0.20 0.464 | v1_exuberant_affect 1 1.00 0.000 | at 1 1.00 0.000 | n75 1 1.00 0.000 | * 1 1.00 0.000 | V4_negative_affect 1 0.02 0.111 | to 1 1.00 0.000 | f3_mother 1 1.00 0.000 | c12_talk 1 1.00 0.000 | v2_positive_affect 1 1.00 0.000 | at 1 1.00 0.000 | n65 1 1.00 0.000 | * 1 1.00 0.000 | V1_exuberant_affect 1 0.02 0.111 | to 1 1.00 0.000 | f3_mother 1 1.00 0.000 | c42_command_ambiguous 1 1.00 0.000 | v3_neutral_affect 1 1.00 0.000 | at 1 1.00 0.000 | n76 1 1.00 0.000 | * 1 1.00 0.000 | C01_comply 9 0.11 0.348 | V3_neutral_affect 9 1.00 0.000 | to 9 1.00 0.000 | f3_mother 5 0.56 0.471 | c12_talk 3 0.60 0.442 | v3_neutral_affect 3 1.00 0.000 | at 3 1.00 0.000 | n68 1 0.33 0.528 | * 1 1.00 0.000 | n78 1 0.33 0.528 | * 1 1.00 0.000 | n132 1 0.33 0.528 | * 1 1.00 0.000 | c11_positive_verbal 1 0.20 0.464 | v3_neutral_affect 1 1.00 0.000 | at 1 1.00 0.000 | n116 1 1.00 0.000 | * 1 1.00 0.000 | c51_agree 1 0.20 0.464 | v3_neutral_affect 1 1.00 0.000 | at 1 1.00 0.000 | n47 1 1.00 0.000 | * 1 1.00 0.000 | f1_child 4 0.44 0.520 | c12_talk 2 0.50 0.500 | v3_neutral_affect 2 1.00 0.000 | at 2 1.00 0.000 | n94 1 0.50 0.500 | * 1 1.00 0.000 | n173 1 0.50 0.500 | * 1 1.00 0.000 | c01_comply 1 0.25 0.500 | v3_neutral_affect 1 1.00 0.000 | at 1 1.00 0.000 | n131 1 1.00 0.000 | * 1 1.00 0.000 | c42_command_ambiguous 1 0.25 0.500 | v3_neutral_affect 1 1.00 0.000 | at 1 1.00 0.000 | n6 1 1.00 0.000 | * 1 1.00 0.000 | C42_command_ambiguous 1 0.01 0.077 | V3_neutral_affect 1 1.00 0.000 | to 1 1.00 0.000 | f3_mother 1 1.00 0.000 | c01_comply 1 1.00 0.000 | v3_neutral_affect 1 1.00 0.000 | at 1 1.00 0.000 | n7 1 1.00 0.000 | * 1 1.00 0.000 | C62_vocal 19 0.23 0.487 | V2_positive_affect 17 0.89 0.144 | to 17 1.00 0.000 | f3_mother 13 0.76 0.296 | c12_talk 7 0.54 0.481 | v3_neutral_affect 6 0.86 0.191 | at 6 1.00 0.000 | n39 1 0.17 0.431 | * 1 1.00 0.000 | n44 1 0.17 0.431 | * 1 1.00 0.000 | n141 1 0.17 0.431 | * 1 1.00 0.000 | n145 1 0.17 0.431 | * 1 1.00 0.000 | n160 1 0.17 0.431 | * 1 1.00 0.000 | n166 1 0.17 0.431 | * 1 1.00 0.000 | v2_positive_affect 1 0.14 0.401 | at 1 1.00 0.000 | n42 1 1.00 0.000 | * 1 1.00 0.000 | c11_positive_verbal 1 0.08 0.285 | v2_positive_affect 1 1.00 0.000 | at 1 1.00 0.000 | n152 1 1.00 0.000 | * 1 1.00 0.000 | c62_vocal 1 0.08 0.285 | v2_positive_affect 1 1.00 0.000 | at 1 1.00 0.000 | n157 1 1.00 0.000 | * 1 1.00 0.000 | c32_command 2 0.15 0.415 | v3_neutral_affect 2 1.00 0.000 | at 2 1.00 0.000 | n20 1 0.50 0.500 | * 1 1.00 0.000 | n171 1 0.50 0.500 | * 1 1.00 0.000 | c13_negative_verbal 2 0.15 0.415 | v2_positive_affect 2 1.00 0.000 | at 2 1.00 0.000 | n22 1 0.50 0.500 | * 1 1.00 0.000 | n127 1 0.50 0.500 | * 1 1.00 0.000 | f1_child 3 0.18 0.442 | c12_talk 3 1.00 0.000 | v2_positive_affect 3 1.00 0.000 | at 3 1.00 0.000 | n33 1 0.33 0.528 | * 1 1.00 0.000 | n37 1 0.33 0.528 | * 1 1.00 0.000 | n154 1 0.33 0.528 | * 1 1.00 0.000 | f9_null 1 0.06 0.240 | c99_null 1 1.00 0.000 | v9_null 1 1.00 0.000 | at 1 1.00 0.000 | n56 1 1.00 0.000 | * 1 1.00 0.000 | V3_neutral_affect 2 0.11 0.342 | to 2 1.00 0.000 | f1_child 1 0.50 0.500 | c12_talk 1 1.00 0.000 | v2_positive_affect 1 1.00 0.000 | at 1 1.00 0.000 | n74 1 1.00 0.000 | * 1 1.00 0.000 | f3_mother 1 0.50 0.500 | c62_vocal 1 1.00 0.000 | v2_positive_affect 1 1.00 0.000 | at 1 1.00 0.000 | n103 1 1.00 0.000 | * 1 1.00 0.000 | C32_command 1 0.01 0.077 | V3_neutral_affect 1 1.00 0.000 | to 1 1.00 0.000 | f3_mother 1 1.00 0.000 | c51_agree 1 1.00 0.000 | v3_neutral_affect 1 1.00 0.000 | at 1 1.00 0.000 | n60 1 1.00 0.000 | * 1 1.00 0.000 | C31_request 1 0.01 0.077 | V3_neutral_affect 1 1.00 0.000 | to 1 1.00 0.000 | f3_mother 1 1.00 0.000 | c51_agree 1 1.00 0.000 | v3_neutral_affect 1 1.00 0.000 | at 1 1.00 0.000 | n82 1 1.00 0.000 | * 1 1.00 0.000 | C11_positive_verbal 1 0.01 0.077 | V3_neutral_affect 1 1.00 0.000 | to 1 1.00 0.000 | f3_mother 1 1.00 0.000 | c11_positive_verbal 1 1.00 0.000 | v3_neutral_affect 1 1.00 0.000 | at 1 1.00 0.000 | n149 1 1.00 0.000 | * 1 1.00 0.000 | F9_null 7 0.04 0.186 | C99_null 7 1.00 0.000 | V9_null 7 1.00 0.000 | to 7 1.00 0.000 | f1_child 4 0.57 0.461 | c12_talk 3 0.75 0.311 | v3_neutral_affect 2 0.67 0.390 | at 2 1.00 0.000 | n16 1 0.50 0.500 | * 1 1.00 0.000 | n24 1 0.50 0.500 | * 1 1.00 0.000 | v2_positive_affect 1 0.33 0.528 | at 1 1.00 0.000 | n57 1 1.00 0.000 | * 1 1.00 0.000 | c62_vocal 1 0.25 0.500 | v2_positive_affect 1 1.00 0.000 | at 1 1.00 0.000 | n165 1 1.00 0.000 | * 1 1.00 0.000 | f3_mother 3 0.43 0.524 | c11_positive_verbal 2 0.67 0.390 | v3_neutral_affect 1 0.50 0.500 | at 1 1.00 0.000 | n9 1 1.00 0.000 | * 1 1.00 0.000 | v2_positive_affect 1 0.50 0.500 | at 1 1.00 0.000 | n27 1 1.00 0.000 | * 1 1.00 0.000 | c12_talk 1 0.33 0.528 | v3_neutral_affect 1 1.00 0.000 | at 1 1.00 0.000 | n1 1 1.00 0.000 | * 1 1.00 0.000
Family Interaction Study • Datasets
| Family Interaction Analysis | Abbreviated Dataset 1 | Pairwise Transitions | Numbered Episodes | | f9 c99 v9 f3 c12 v3 n1 | f3 c12 v3 f1 c12 v3 n2 | f1 c12 v3 f3 c42 v3 n3 | f3 c42 v3 f3 c32 v3 n4 | f3 c32 v3 f1 c01 v3 n5 | f1 c01 v3 f1 c42 v3 n6 | f1 c42 v3 f3 c01 v3 n7 | f3 c01 v3 f9 c99 v9 n8 | | f9 c99 v9 f3 c11 v3 n9 | f3 c11 v3 f1 c12 v3 n10 | f1 c12 v3 f3 c12 v2 n11 | f3 c12 v2 f1 c12 v2 n12 | f1 c12 v2 f3 c12 v3 n13 | f3 c12 v3 f1 c12 v2 n14 | f1 c12 v2 f9 c99 v9 n15 | | f9 c99 v9 f1 c12 v3 n16 | f1 c12 v3 f3 c62 v3 n17 | f3 c62 v3 f3 c32 v3 n18 | f3 c32 v3 f1 c62 v2 n19 | f1 c62 v2 f3 c32 v3 n20 | f3 c32 v3 f1 c62 v2 n21 | f1 c62 v2 f3 c13 v2 n22 | f3 c13 v2 f9 c99 v9 n23 | | f9 c99 v9 f1 c12 v3 n24 | f1 c12 v3 f3 c12 v3 n25 | f3 c12 v3 f9 c99 v9 n26 | | f9 c99 v9 f3 c11 v2 n27 | f3 c11 v2 f1 c12 v2 n28 | f1 c12 v2 f3 c12 v3 n29 | f3 c12 v3 f1 c12 v2 n30 | f1 c12 v2 f3 c62 v2 n31 | f3 c62 v2 f1 c62 v2 n32 | f1 c62 v2 f1 c12 v2 n33 | f1 c12 v2 f3 c12 v2 n34 | f3 c12 v2 f1 c12 v2 n35 | f1 c12 v2 f1 c62 v2 n36 | f1 c62 v2 f1 c12 v2 n37 | f1 c12 v2 f1 c62 v2 n38 | f1 c62 v2 f3 c12 v3 n39 | f3 c12 v3 f1 c12 v2 n40 | f1 c12 v2 f1 c62 v2 n41 | f1 c62 v2 f3 c12 v2 n42 | f3 c12 v2 f1 c62 v2 n43 | f1 c62 v2 f3 c12 v3 n44 | f3 c12 v3 f3 c32 v3 n45 | f3 c32 v3 f1 c01 v3 n46 | f1 c01 v3 f3 c51 v3 n47 | f3 c51 v3 f3 c12 v3 n48 | f3 c12 v3 f3 c01 v3 n49 | f3 c01 v3 f1 c12 v3 n50 | f1 c12 v3 f3 c12 v3 n51 | f3 c12 v3 f1 c12 v3 n52 | f1 c12 v3 f3 c12 v3 n53 | f3 c12 v3 f1 c12 v2 n54 | f1 c12 v2 f1 c62 v2 n55 | f1 c62 v2 f9 c99 v9 n56 | | f9 c99 v9 f1 c12 v2 n57 | f1 c12 v2 f3 c12 v3 n58 | f3 c12 v3 f1 c32 v3 n59 | f1 c32 v3 f3 c51 v3 n60 | f3 c51 v3 f3 c12 v3 n61 | f3 c12 v3 f1 c12 v3 n62 | f1 c12 v3 f3 c01 v3 n63 | f3 c01 v3 f1 c12 v4 n64 | f1 c12 v4 f3 c12 v2 n65 | f3 c12 v2 f3 c32 v3 n66 | f3 c32 v3 f1 c01 v3 n67 | f1 c01 v3 f3 c12 v3 n68 | f3 c12 v3 f1 c12 v2 n69 | f1 c12 v2 f3 c12 v3 n70 | f3 c12 v3 f1 c12 v3 n71 | f1 c12 v3 f3 c12 v3 n72 | f3 c12 v3 f1 c62 v3 n73 | f1 c62 v3 f1 c12 v2 n74 | f1 c12 v2 f1 c12 v1 n75 | f1 c12 v1 f3 c42 v3 n76 | f3 c42 v3 f1 c01 v3 n77 | f1 c01 v3 f3 c12 v3 n78 | f3 c12 v3 f1 c12 v2 n79 | f1 c12 v2 f3 c12 v3 n80 | f3 c12 v3 f1 c31 v3 n81 | f1 c31 v3 f3 c51 v3 n82 | f3 c51 v3 f1 c12 v3 n83 | f1 c12 v3 f3 c12 v3 n84 | f3 c12 v3 f1 c12 v3 n85 | f1 c12 v3 f3 c12 v3 n86 | f3 c12 v3 f1 c12 v3 n87 | f1 c12 v3 f3 c12 v3 n88 | f3 c12 v3 f1 c12 v3 n89 | f1 c12 v3 f3 c12 v3 n90 | f3 c12 v3 f1 c12 v3 n91 | f1 c12 v3 f3 c32 v3 n92 | f3 c32 v3 f1 c01 v3 n93 | f1 c01 v3 f1 c12 v3 n94 | f1 c12 v3 f3 c11 v2 n95 | f3 c11 v2 f1 c12 v3 n96 | f1 c12 v3 f3 c12 v3 n97 | f3 c12 v3 f1 c12 v3 n98 | f1 c12 v3 f3 c12 v3 n99 | f3 c12 v3 f1 c12 v3 n100 | f1 c12 v3 f3 c12 v3 n101 | f3 c12 v3 f1 c62 v3 n102 | f1 c62 v3 f3 c62 v2 n103 | f3 c62 v2 f1 c12 v3 n104 | f1 c12 v3 f3 c12 v3 n105 | f3 c12 v3 f1 c12 v3 n106 | f1 c12 v3 f3 c12 v3 n107 | f3 c12 v3 f1 c12 v2 n108 | f1 c12 v2 f3 c12 v2 n109 | f3 c12 v2 f1 c12 v2 n110 | f1 c12 v2 f3 c12 v3 n111 | f3 c12 v3 f1 c12 v3 n112 | f1 c12 v3 f3 c12 v3 n113 | f3 c12 v3 f3 c42 v3 n114 | f3 c42 v3 f1 c01 v3 n115 | f1 c01 v3 f3 c11 v3 n116 | f3 c11 v3 f1 c12 v3 n117 | f1 c12 v3 f3 c12 v3 n118 | f3 c12 v3 f1 c12 v3 n119 | f1 c12 v3 f3 c12 v2 n120 | f3 c12 v2 f1 c12 v3 n121 | f1 c12 v3 f3 c12 v3 n122 | f3 c12 v3 f1 c12 v3 n123 | f1 c12 v3 f3 c12 v3 n124 | f3 c12 v3 f3 c62 v2 n125 | f3 c62 v2 f1 c62 v2 n126 | f1 c62 v2 f3 c13 v2 n127 | f3 c13 v2 f3 c32 v3 n128 | f3 c32 v3 f3 c32 v3 n129 | f3 c32 v3 f1 c01 v3 n130 | f1 c01 v3 f1 c01 v3 n131 | f1 c01 v3 f3 c12 v3 n132 | f3 c12 v3 f1 c12 v3 n133 | f1 c12 v3 f3 c12 v3 n134 | f3 c12 v3 f1 c12 v3 n135 | f1 c12 v3 f3 c12 v3 n136 | f3 c12 v3 f1 c12 v3 n137 | f1 c12 v3 f3 c11 v2 n138 | f3 c11 v2 f3 c12 v2 n139 | f3 c12 v2 f1 c62 v2 n140 | f1 c62 v2 f3 c12 v3 n141 | f3 c12 v3 f1 c12 v2 n142 | f1 c12 v2 f3 c12 v2 n143 | f3 c12 v2 f1 c62 v2 n144 | f1 c62 v2 f3 c12 v3 n145 | f3 c12 v3 f1 c12 v3 n146 | f1 c12 v3 f3 c12 v3 n147 | f3 c12 v3 f1 c11 v3 n148 | f1 c11 v3 f3 c11 v3 n149 | f3 c11 v3 f3 c12 v3 n150 | f3 c12 v3 f1 c62 v2 n151 | f1 c62 v2 f3 c11 v2 n152 | f3 c11 v2 f1 c62 v2 n153 | f1 c62 v2 f1 c12 v2 n154 | f1 c12 v2 f3 c12 v3 n155 | f3 c12 v3 f1 c62 v2 n156 | f1 c62 v2 f3 c62 v2 n157 | f3 c62 v2 f3 c22 v2 n158 | f3 c22 v2 f1 c62 v2 n159 | f1 c62 v2 f3 c12 v3 n160 | f3 c12 v3 f1 c12 v3 n161 | f1 c12 v3 f3 c12 v3 n162 | f3 c12 v3 f1 c12 v2 n163 | f1 c12 v2 f9 c99 v9 n164 | | f9 c99 v9 f1 c62 v2 n165 | f1 c62 v2 f3 c12 v3 n166 | f3 c12 v3 f1 c12 v2 n167 | f1 c12 v2 f3 c13 v4 n168 | f3 c13 v4 f3 c12 v3 n169 | f3 c12 v3 f1 c62 v2 n170 | f1 c62 v2 f3 c32 v3 n171 | f3 c32 v3 f1 c01 v3 n172 | f1 c01 v3 f1 c12 v3 n173 | f1 c12 v3 f3 c12 v3 n174 | f3 c12 v3 f9 c99 v9 n175
| Family Interaction Analysis | Abbreviated Dataset 1 | Numbered Episodes | | 9 99 9 0 f9 c99 v9 n0 | | 3 12 3 5 f3 c12 v3 n1 | 1 12 3 8 f1 c12 v3 n2 | 3 42 3 10 f3 c42 v3 n3 | 3 32 3 18 f3 c32 v3 n4 | 1 01 3 19 f1 c01 v3 n5 | 1 42 3 22 f1 c42 v3 n6 | 3 01 3 24 f3 c01 v3 n7 | 9 99 9 29 f9 c99 v9 n8 | | 3 11 3 40 f3 c11 v3 n9 | 1 12 3 43 f1 c12 v3 n10 | 3 12 2 46 f3 c12 v2 n11 | 1 12 2 51 f1 c12 v2 n12 | 3 12 3 54 f3 c12 v3 n13 | 1 12 2 56 f1 c12 v2 n14 | 9 99 9 61 f9 c99 v9 n15 | | 1 12 3 68 f1 c12 v3 n16 | 3 62 3 70 f3 c62 v3 n17 | 3 32 3 73 f3 c32 v3 n18 | 1 62 2 74 f1 c62 v2 n19 | 3 32 3 77 f3 c32 v3 n20 | 1 62 2 78 f1 c62 v2 n21 | 3 13 2 82 f3 c13 v2 n22 | 9 99 9 91 f9 c99 v9 n23 | | 1 12 3 94 f1 c12 v3 n24 | 3 12 3 96 f3 c12 v3 n25 | 9 99 9 101 f9 c99 v9 n26 | | 3 11 2 103 f3 c11 v2 n27 | 1 12 2 106 f1 c12 v2 n28 | 3 12 3 108 f3 c12 v3 n29 | 1 12 2 109 f1 c12 v2 n30 | 3 62 2 112 f3 c62 v2 n31 | 1 62 2 115 f1 c62 v2 n32 | 1 12 2 120 f1 c12 v2 n33 | 3 12 2 122 f3 c12 v2 n34 | 1 12 2 127 f1 c12 v2 n35 | 1 62 2 131 f1 c62 v2 n36 | 1 12 2 136 f1 c12 v2 n37 | 1 62 2 138 f1 c62 v2 n38 | 3 12 3 143 f3 c12 v3 n39 | 1 12 2 148 f1 c12 v2 n40 | 1 62 2 155 f1 c62 v2 n41 | 3 12 2 160 f3 c12 v2 n42 | 1 62 2 168 f1 c62 v2 n43 | 3 12 3 170 f3 c12 v3 n44 | 3 32 3 175 f3 c32 v3 n45 | 1 01 3 177 f1 c01 v3 n46 | 3 51 3 184 f3 c51 v3 n47 | 3 12 3 187 f3 c12 v3 n48 | 3 01 3 189 f3 c01 v3 n49 | 1 12 3 192 f1 c12 v3 n50 | 3 12 3 194 f3 c12 v3 n51 | 1 12 3 197 f1 c12 v3 n52 | 3 12 3 200 f3 c12 v3 n53 | 1 12 2 202 f1 c12 v2 n54 | 1 62 2 205 f1 c62 v2 n55 | 9 99 9 211 f9 c99 v9 n56 | | 1 12 2 214 f1 c12 v2 n57 | 3 12 3 218 f3 c12 v3 n58 | 1 32 3 222 f1 c32 v3 n59 | 3 51 3 225 f3 c51 v3 n60 | 3 12 3 227 f3 c12 v3 n61 | 1 12 3 228 f1 c12 v3 n62 | 3 01 3 230 f3 c01 v3 n63 | 1 12 4 234 f1 c12 v4 n64 | 3 12 2 238 f3 c12 v2 n65 | 3 32 3 241 f3 c32 v3 n66 | 1 01 3 242 f1 c01 v3 n67 | 3 12 3 244 f3 c12 v3 n68 | 1 12 2 245 f1 c12 v2 n69 | 3 12 3 252 f3 c12 v3 n70 | 1 12 3 254 f1 c12 v3 n71 | 3 12 3 256 f3 c12 v3 n72 | 1 62 3 267 f1 c62 v3 n73 | 1 12 2 269 f1 c12 v2 n74 | 1 12 1 278 f1 c12 v1 n75 | 3 42 3 282 f3 c42 v3 n76 | 1 01 3 287 f1 c01 v3 n77 | 3 12 3 289 f3 c12 v3 n78 | 1 12 2 291 f1 c12 v2 n79 | 3 12 3 296 f3 c12 v3 n80 | 1 31 3 301 f1 c31 v3 n81 | 3 51 3 305 f3 c51 v3 n82 | 1 12 3 309 f1 c12 v3 n83 | 3 12 3 311 f3 c12 v3 n84 | 1 12 3 313 f1 c12 v3 n85 | 3 12 3 316 f3 c12 v3 n86 | 1 12 3 319 f1 c12 v3 n87 | 3 12 3 322 f3 c12 v3 n88 | 1 12 3 323 f1 c12 v3 n89 | 3 12 3 324 f3 c12 v3 n90 | 1 12 3 326 f1 c12 v3 n91 | 3 32 3 329 f3 c32 v3 n92 | 1 01 3 331 f1 c01 v3 n93 | 1 12 3 333 f1 c12 v3 n94 | 3 11 2 338 f3 c11 v2 n95 | 1 12 3 342 f1 c12 v3 n96 | 3 12 3 344 f3 c12 v3 n97 | 1 12 3 347 f1 c12 v3 n98 | 3 12 3 349 f3 c12 v3 n99 | 1 12 3 351 f1 c12 v3 n100 | 3 12 3 352 f3 c12 v3 n101 | 1 62 3 354 f1 c62 v3 n102 | 3 62 2 356 f3 c62 v2 n103 | 1 12 3 362 f1 c12 v3 n104 | 3 12 3 367 f3 c12 v3 n105 | 1 12 3 370 f1 c12 v3 n106 | 3 12 3 371 f3 c12 v3 n107 | 1 12 2 373 f1 c12 v2 n108 | 3 12 2 378 f3 c12 v2 n109 | 1 12 2 381 f1 c12 v2 n110 | 3 12 3 382 f3 c12 v3 n111 | 1 12 3 389 f1 c12 v3 n112 | 3 12 3 392 f3 c12 v3 n113 | 3 42 3 394 f3 c42 v3 n114 | 1 01 3 396 f1 c01 v3 n115 | 3 11 3 398 f3 c11 v3 n116 | 1 12 3 401 f1 c12 v3 n117 | 3 12 3 403 f3 c12 v3 n118 | 1 12 3 405 f1 c12 v3 n119 | 3 12 2 406 f3 c12 v2 n120 | 1 12 3 409 f1 c12 v3 n121 | 3 12 3 412 f3 c12 v3 n122 | 1 12 3 414 f1 c12 v3 n123 | 3 12 3 416 f3 c12 v3 n124 | 3 62 2 417 f3 c62 v2 n125 | 1 62 2 419 f1 c62 v2 n126 | 3 13 2 422 f3 c13 v2 n127 | 3 32 3 426 f3 c32 v3 n128 | 3 32 3 430 f3 c32 v3 n129 | 1 01 3 431 f1 c01 v3 n130 | 1 01 3 434 f1 c01 v3 n131 | 3 12 3 438 f3 c12 v3 n132 | 1 12 3 439 f1 c12 v3 n133 | 3 12 3 440 f3 c12 v3 n134 | 1 12 3 441 f1 c12 v3 n135 | 3 12 3 443 f3 c12 v3 n136 | 1 12 3 449 f1 c12 v3 n137 | 3 11 2 450 f3 c11 v2 n138 | 3 12 2 455 f3 c12 v2 n139 | 1 62 2 457 f1 c62 v2 n140 | 3 12 3 462 f3 c12 v3 n141 | 1 12 2 463 f1 c12 v2 n142 | 3 12 2 467 f3 c12 v2 n143 | 1 62 2 469 f1 c62 v2 n144 | 3 12 3 473 f3 c12 v3 n145 | 1 12 3 477 f1 c12 v3 n146 | 3 12 3 479 f3 c12 v3 n147 | 1 11 3 490 f1 c11 v3 n148 | 3 11 3 492 f3 c11 v3 n149 | 3 12 3 495 f3 c12 v3 n150 | 1 62 2 514 f1 c62 v2 n151 | 3 11 2 517 f3 c11 v2 n152 | 1 62 2 524 f1 c62 v2 n153 | 1 12 2 527 f1 c12 v2 n154 | 3 12 3 530 f3 c12 v3 n155 | 1 62 2 534 f1 c62 v2 n156 | 3 62 2 537 f3 c62 v2 n157 | 3 22 2 539 f3 c22 v2 n158 | 1 62 2 544 f1 c62 v2 n159 | 3 12 3 547 f3 c12 v3 n160 | 1 12 3 548 f1 c12 v3 n161 | 3 12 3 549 f3 c12 v3 n162 | 1 12 2 553 f1 c12 v2 n163 | 9 99 9 561 f9 c99 v9 n164 | | 1 62 2 564 f1 c62 v2 n165 | 3 12 3 569 f3 c12 v3 n166 | 1 12 2 575 f1 c12 v2 n167 | 3 13 4 577 f3 c13 v4 n168 | 3 12 3 585 f3 c12 v3 n169 | 1 62 2 589 f1 c62 v2 n170 | 3 32 3 591 f3 c32 v3 n171 | 1 01 3 593 f1 c01 v3 n172 | 1 12 3 595 f1 c12 v3 n173 | 3 12 3 599 f3 c12 v3 n174 | 9 99 9 603 f9 c99 v9 n175
| Family Interaction Analysis | Abbreviated Dataset 1 | Timed Episodes | | 9 99 9 0 f9 c99 v9 t0 | | 3 12 3 5 f3 c12 v3 t5 | 1 12 3 8 f1 c12 v3 t8 | 3 42 3 10 f3 c42 v3 t10 | 3 32 3 18 f3 c32 v3 t18 | 1 01 3 19 f1 c01 v3 t19 | 1 42 3 22 f1 c42 v3 t22 | 3 01 3 24 f3 c01 v3 t24 | 9 99 9 29 f9 c99 v9 t29 | | 3 11 3 40 f3 c11 v3 t40 | 1 12 3 43 f1 c12 v3 t43 | 3 12 2 46 f3 c12 v2 t46 | 1 12 2 51 f1 c12 v2 t51 | 3 12 3 54 f3 c12 v3 t54 | 1 12 2 56 f1 c12 v2 t56 | 9 99 9 61 f9 c99 v9 t61 | | 1 12 3 68 f1 c12 v3 t68 | 3 62 3 70 f3 c62 v3 t70 | 3 32 3 73 f3 c32 v3 t73 | 1 62 2 74 f1 c62 v2 t74 | 3 32 3 77 f3 c32 v3 t77 | 1 62 2 78 f1 c62 v2 t78 | 3 13 2 82 f3 c13 v2 t82 | 9 99 9 91 f9 c99 v9 t91 | | 1 12 3 94 f1 c12 v3 t94 | 3 12 3 96 f3 c12 v3 t96 | 9 99 9 101 f9 c99 v9 t101 | | 3 11 2 103 f3 c11 v2 t103 | 1 12 2 106 f1 c12 v2 t106 | 3 12 3 108 f3 c12 v3 t108 | 1 12 2 109 f1 c12 v2 t109 | 3 62 2 112 f3 c62 v2 t112 | 1 62 2 115 f1 c62 v2 t115 | 1 12 2 120 f1 c12 v2 t120 | 3 12 2 122 f3 c12 v2 t122 | 1 12 2 127 f1 c12 v2 t127 | 1 62 2 131 f1 c62 v2 t131 | 1 12 2 136 f1 c12 v2 t136 | 1 62 2 138 f1 c62 v2 t138 | 3 12 3 143 f3 c12 v3 t143 | 1 12 2 148 f1 c12 v2 t148 | 1 62 2 155 f1 c62 v2 t155 | 3 12 2 160 f3 c12 v2 t160 | 1 62 2 168 f1 c62 v2 t168 | 3 12 3 170 f3 c12 v3 t170 | 3 32 3 175 f3 c32 v3 t175 | 1 01 3 177 f1 c01 v3 t177 | 3 51 3 184 f3 c51 v3 t184 | 3 12 3 187 f3 c12 v3 t187 | 3 01 3 189 f3 c01 v3 t189 | 1 12 3 192 f1 c12 v3 t192 | 3 12 3 194 f3 c12 v3 t194 | 1 12 3 197 f1 c12 v3 t197 | 3 12 3 200 f3 c12 v3 t200 | 1 12 2 202 f1 c12 v2 t202 | 1 62 2 205 f1 c62 v2 t205 | 9 99 9 211 f9 c99 v9 t211 | | 1 12 2 214 f1 c12 v2 t214 | 3 12 3 218 f3 c12 v3 t218 | 1 32 3 222 f1 c32 v3 t222 | 3 51 3 225 f3 c51 v3 t225 | 3 12 3 227 f3 c12 v3 t227 | 1 12 3 228 f1 c12 v3 t228 | 3 01 3 230 f3 c01 v3 t230 | 1 12 4 234 f1 c12 v4 t234 | 3 12 2 238 f3 c12 v2 t238 | 3 32 3 241 f3 c32 v3 t241 | 1 01 3 242 f1 c01 v3 t242 | 3 12 3 244 f3 c12 v3 t244 | 1 12 2 245 f1 c12 v2 t245 | 3 12 3 252 f3 c12 v3 t252 | 1 12 3 254 f1 c12 v3 t254 | 3 12 3 256 f3 c12 v3 t256 | 1 62 3 267 f1 c62 v3 t267 | 1 12 2 269 f1 c12 v2 t269 | 1 12 1 278 f1 c12 v1 t278 | 3 42 3 282 f3 c42 v3 t282 | 1 01 3 287 f1 c01 v3 t287 | 3 12 3 289 f3 c12 v3 t289 | 1 12 2 291 f1 c12 v2 t291 | 3 12 3 296 f3 c12 v3 t296 | 1 31 3 301 f1 c31 v3 t301 | 3 51 3 305 f3 c51 v3 t305 | 1 12 3 309 f1 c12 v3 t309 | 3 12 3 311 f3 c12 v3 t311 | 1 12 3 313 f1 c12 v3 t313 | 3 12 3 316 f3 c12 v3 t316 | 1 12 3 319 f1 c12 v3 t319 | 3 12 3 322 f3 c12 v3 t322 | 1 12 3 323 f1 c12 v3 t323 | 3 12 3 324 f3 c12 v3 t324 | 1 12 3 326 f1 c12 v3 t326 | 3 32 3 329 f3 c32 v3 t329 | 1 01 3 331 f1 c01 v3 t331 | 1 12 3 333 f1 c12 v3 t333 | 3 11 2 338 f3 c11 v2 t338 | 1 12 3 342 f1 c12 v3 t342 | 3 12 3 344 f3 c12 v3 t344 | 1 12 3 347 f1 c12 v3 t347 | 3 12 3 349 f3 c12 v3 t349 | 1 12 3 351 f1 c12 v3 t351 | 3 12 3 352 f3 c12 v3 t352 | 1 62 3 354 f1 c62 v3 t354 | 3 62 2 356 f3 c62 v2 t356 | 1 12 3 362 f1 c12 v3 t362 | 3 12 3 367 f3 c12 v3 t367 | 1 12 3 370 f1 c12 v3 t370 | 3 12 3 371 f3 c12 v3 t371 | 1 12 2 373 f1 c12 v2 t373 | 3 12 2 378 f3 c12 v2 t378 | 1 12 2 381 f1 c12 v2 t381 | 3 12 3 382 f3 c12 v3 t382 | 1 12 3 389 f1 c12 v3 t389 | 3 12 3 392 f3 c12 v3 t392 | 3 42 3 394 f3 c42 v3 t394 | 1 01 3 396 f1 c01 v3 t396 | 3 11 3 398 f3 c11 v3 t398 | 1 12 3 401 f1 c12 v3 t401 | 3 12 3 403 f3 c12 v3 t403 | 1 12 3 405 f1 c12 v3 t405 | 3 12 2 406 f3 c12 v2 t406 | 1 12 3 409 f1 c12 v3 t409 | 3 12 3 412 f3 c12 v3 t412 | 1 12 3 414 f1 c12 v3 t414 | 3 12 3 416 f3 c12 v3 t416 | 3 62 2 417 f3 c62 v2 t417 | 1 62 2 419 f1 c62 v2 t419 | 3 13 2 422 f3 c13 v2 t422 | 3 32 3 426 f3 c32 v3 t426 | 3 32 3 430 f3 c32 v3 t430 | 1 01 3 431 f1 c01 v3 t431 | 1 01 3 434 f1 c01 v3 t434 | 3 12 3 438 f3 c12 v3 t438 | 1 12 3 439 f1 c12 v3 t439 | 3 12 3 440 f3 c12 v3 t440 | 1 12 3 441 f1 c12 v3 t441 | 3 12 3 443 f3 c12 v3 t443 | 1 12 3 449 f1 c12 v3 t449 | 3 11 2 450 f3 c11 v2 t450 | 3 12 2 455 f3 c12 v2 t455 | 1 62 2 457 f1 c62 v2 t457 | 3 12 3 462 f3 c12 v3 t462 | 1 12 2 463 f1 c12 v2 t463 | 3 12 2 467 f3 c12 v2 t467 | 1 62 2 469 f1 c62 v2 t469 | 3 12 3 473 f3 c12 v3 t473 | 1 12 3 477 f1 c12 v3 t477 | 3 12 3 479 f3 c12 v3 t479 | 1 11 3 490 f1 c11 v3 t490 | 3 11 3 492 f3 c11 v3 t492 | 3 12 3 495 f3 c12 v3 t495 | 1 62 2 514 f1 c62 v2 t514 | 3 11 2 517 f3 c11 v2 t517 | 1 62 2 524 f1 c62 v2 t524 | 1 12 2 527 f1 c12 v2 t527 | 3 12 3 530 f3 c12 v3 t530 | 1 62 2 534 f1 c62 v2 t534 | 3 62 2 537 f3 c62 v2 t537 | 3 22 2 539 f3 c22 v2 t539 | 1 62 2 544 f1 c62 v2 t544 | 3 12 3 547 f3 c12 v3 t547 | 1 12 3 548 f1 c12 v3 t548 | 3 12 3 549 f3 c12 v3 t549 | 1 12 2 553 f1 c12 v2 t553 | 9 99 9 561 f9 c99 v9 t561 | | 1 62 2 564 f1 c62 v2 t564 | 3 12 3 569 f3 c12 v3 t569 | 1 12 2 575 f1 c12 v2 t575 | 3 13 4 577 f3 c13 v4 t577 | 3 12 3 585 f3 c12 v3 t585 | 1 62 2 589 f1 c62 v2 t589 | 3 32 3 591 f3 c32 v3 t591 | 1 01 3 593 f1 c01 v3 t593 | 1 12 3 595 f1 c12 v3 t595 | 3 12 3 599 f3 c12 v3 t599 | 9 99 9 603 f9 c99 v9 t603
Family Interaction Study • Outputs
FIT1.SUM from 175 1.00 0.000 j1_f3_mother 85 0.49 0.506 j2_c1_conversation 61 0.72 0.344 j3_q2_neutral 51 0.84 0.216 j4_v3_neutral_affect 43 0.84 0.208 to 43 1.00 0.000 k1_f1_child 37 0.86 0.187 k2_c1_conversation 30 0.81 0.245 k3_q2_neutral 29 0.97 0.047 k4_v3_neutral_affect 19 0.66 0.400 at 19 1.00 0.000 n2 1 0.05 0.224 * 1 1.00 0.000 n52 1 0.05 0.224 * 1 1.00 0.000 n62 1 0.05 0.224 * 1 1.00 0.000 n71 1 0.05 0.224 * 1 1.00 0.000 n85 1 0.05 0.224 * 1 1.00 0.000 n87 1 0.05 0.224 * 1 1.00 0.000 n89 1 0.05 0.224 * 1 1.00 0.000 n91 1 0.05 0.224 * 1 1.00 0.000 n98 1 0.05 0.224 * 1 1.00 0.000 n100 1 0.05 0.224 * 1 1.00 0.000 n106 1 0.05 0.224 * 1 1.00 0.000 n112 1 0.05 0.224 * 1 1.00 0.000 n119 1 0.05 0.224 * 1 1.00 0.000 n123 1 0.05 0.224 * 1 1.00 0.000 n133 1 0.05 0.224 * 1 1.00 0.000 n135 1 0.05 0.224 * 1 1.00 0.000 n137 1 0.05 0.224 * 1 1.00 0.000 n146 1 0.05 0.224 * 1 1.00 0.000 n161 1 0.05 0.224 * 1 1.00 0.000 k4_v2_positive_affect 10 0.34 0.530 at 10 1.00 0.000 n14 1 0.10 0.332 * 1 1.00 0.000 n30 1 0.10 0.332 * 1 1.00 0.000 n40 1 0.10 0.332 * 1 1.00 0.000 n54 1 0.10 0.332 * 1 1.00 0.000 n69 1 0.10 0.332 * 1 1.00 0.000 n79 1 0.10 0.332 * 1 1.00 0.000 n108 1 0.10 0.332 * 1 1.00 0.000 n142 1 0.10 0.332 * 1 1.00 0.000 n163 1 0.10 0.332 * 1 1.00 0.000 n167 1 0.10 0.332 * 1 1.00 0.000 k3_q1_positive 1 0.03 0.164 k4_v3_neutral_affect 1 1.00 0.000 at 1 1.00 0.000 n148 1 1.00 0.000 * 1 1.00 0.000 k2_c3_clear_directive 2 0.05 0.228 k3_q2_neutral 1 0.50 0.500 k4_v3_neutral_affect 1 1.00 0.000 at 1 1.00 0.000 n59 1 1.00 0.000 * 1 1.00 0.000 k3_q1_positive 1 0.50 0.500 k4_v3_neutral_affect 1 1.00 0.000 at 1 1.00 0.000 n81 1 1.00 0.000 * 1 1.00 0.000 k2_c6_vocal_behavior 5 0.14 0.390 k3_q2_neutral 5 1.00 0.000 k4_v2_positive_affect 3 0.60 0.442 at 3 1.00 0.000 n151 1 0.33 0.528 * 1 1.00 0.000 n156 1 0.33 0.528 * 1 1.00 0.000 n170 1 0.33 0.528 * 1 1.00 0.000 k4_v3_neutral_affect 2 0.40 0.529 at 2 1.00 0.000 n73 1 0.50 0.500 * 1 1.00 0.000 n102 1 0.50 0.500 * 1 1.00 0.000 k1_f#_null_value 2 0.05 0.206 k2_c#_null_value 2 1.00 0.000 k3_q#_null_value 2 1.00 0.000 k4_v#_null_value 2 1.00 0.000 at 2 1.00 0.000 n26 1 0.50 0.500 * 1 1.00 0.000 n175 1 0.50 0.500 * 1 1.00 0.000 k1_f3_mother 4 0.09 0.319 k2_c3_clear_directive 1 0.25 0.500 k3_q2_neutral 1 1.00 0.000 k4_v3_neutral_affect 1 1.00 0.000 at 1 1.00 0.000 n45 1 1.00 0.000 * 1 1.00 0.000 k2_c0_compliance_behavior 1 0.25 0.500 k3_q1_positive 1 1.00 0.000 k4_v3_neutral_affect 1 1.00 0.000 at 1 1.00 0.000 n49 1 1.00 0.000 * 1 1.00 0.000 k2_c4_ambiguous_directive 1 0.25 0.500 k3_q2_neutral 1 1.00 0.000 k4_v3_neutral_affect 1 1.00 0.000 at 1 1.00 0.000 n114 1 1.00 0.000 * 1 1.00 0.000 k2_c6_vocal_behavior 1 0.25 0.500 k3_q2_neutral 1 1.00 0.000 k4_v2_positive_affect 1 1.00 0.000 at 1 1.00 0.000 n125 1 1.00 0.000 * 1 1.00 0.000 j4_v2_positive_affect 8 0.16 0.419 to 8 1.00 0.000 k1_f1_child 7 0.88 0.169 k2_c1_conversation 4 0.57 0.461 k3_q2_neutral 4 1.00 0.000 k4_v2_positive_affect 3 0.75 0.311 at 3 1.00 0.000 n12 1 0.33 0.528 * 1 1.00 0.000 n35 1 0.33 0.528 * 1 1.00 0.000 n110 1 0.33 0.528 * 1 1.00 0.000 k4_v3_neutral_affect 1 0.25 0.500 at 1 1.00 0.000 n121 1 1.00 0.000 * 1 1.00 0.000 k2_c6_vocal_behavior 3 0.43 0.524 k3_q2_neutral 3 1.00 0.000 k4_v2_positive_affect 3 1.00 0.000 at 3 1.00 0.000 n43 1 0.33 0.528 * 1 1.00 0.000 n140 1 0.33 0.528 * 1 1.00 0.000 n144 1 0.33 0.528 * 1 1.00 0.000 k1_f3_mother 1 0.13 0.375 k2_c3_clear_directive 1 1.00 0.000 k3_q2_neutral 1 1.00 0.000 k4_v3_neutral_affect 1 1.00 0.000 at 1 1.00 0.000 n66 1 1.00 0.000 * 1 1.00 0.000 j3_q1_positive 7 0.11 0.358 j4_v2_positive_affect 4 0.57 0.461 to 4 1.00 0.000 k1_f1_child 3 0.75 0.311 k2_c1_conversation 2 0.67 0.390 k3_q2_neutral 2 1.00 0.000 k4_v2_positive_affect 1 0.50 0.500 at 1 1.00 0.000 n28 1 1.00 0.000 * 1 1.00 0.000 k4_v3_neutral_affect 1 0.50 0.500 at 1 1.00 0.000 n96 1 1.00 0.000 * 1 1.00 0.000 k2_c6_vocal_behavior 1 0.33 0.528 k3_q2_neutral 1 1.00 0.000 k4_v2_positive_affect 1 1.00 0.000 at 1 1.00 0.000 n153 1 1.00 0.000 * 1 1.00 0.000 k1_f3_mother 1 0.25 0.500 k2_c1_conversation 1 1.00 0.000 k3_q2_neutral 1 1.00 0.000 k4_v2_positive_affect 1 1.00 0.000 at 1 1.00 0.000 n139 1 1.00 0.000 * 1 1.00 0.000 j4_v3_neutral_affect 3 0.43 0.524 to 3 1.00 0.000 k1_f1_child 2 0.67 0.390 k2_c1_conversation 2 1.00 0.000 k3_q2_neutral 2 1.00 0.000 k4_v3_neutral_affect 2 1.00 0.000 at 2 1.00 0.000 n10 1 0.50 0.500 * 1 1.00 0.000 n117 1 0.50 0.500 * 1 1.00 0.000 k1_f3_mother 1 0.33 0.528 k2_c1_conversation 1 1.00 0.000 k3_q2_neutral 1 1.00 0.000 k4_v3_neutral_affect 1 1.00 0.000 at 1 1.00 0.000 n150 1 1.00 0.000 * 1 1.00 0.000 j3_q3_negative 3 0.05 0.214 j4_v2_positive_affect 2 0.67 0.390 to 2 1.00 0.000 k1_f#_null_value 1 0.50 0.500 k2_c#_null_value 1 1.00 0.000 k3_q#_null_value 1 1.00 0.000 k4_v#_null_value 1 1.00 0.000 at 1 1.00 0.000 n23 1 1.00 0.000 * 1 1.00 0.000 k1_f3_mother 1 0.50 0.500 k2_c3_clear_directive 1 1.00 0.000 k3_q2_neutral 1 1.00 0.000 k4_v3_neutral_affect 1 1.00 0.000 at 1 1.00 0.000 n128 1 1.00 0.000 * 1 1.00 0.000 j4_v4_negative_affect 1 0.33 0.528 to 1 1.00 0.000 k1_f3_mother 1 1.00 0.000 k2_c1_conversation 1 1.00 0.000 k3_q2_neutral 1 1.00 0.000 k4_v3_neutral_affect 1 1.00 0.000 at 1 1.00 0.000 n169 1 1.00 0.000 * 1 1.00 0.000 j2_c4_ambiguous_directive 3 0.04 0.170 j3_q2_neutral 3 1.00 0.000 j4_v3_neutral_affect 3 1.00 0.000 to 3 1.00 0.000 k1_f1_child 2 0.67 0.390 k2_c0_compliance_behavior 2 1.00 0.000 k3_q1_positive 2 1.00 0.000 k4_v3_neutral_affect 2 1.00 0.000 at 2 1.00 0.000 n77 1 0.50 0.500 * 1 1.00 0.000 n115 1 0.50 0.500 * 1 1.00 0.000 k1_f3_mother 1 0.33 0.528 k2_c3_clear_directive 1 1.00 0.000 k3_q2_neutral 1 1.00 0.000 k4_v3_neutral_affect 1 1.00 0.000 at 1 1.00 0.000 n4 1 1.00 0.000 * 1 1.00 0.000 j2_c3_clear_directive 9 0.11 0.343 j3_q2_neutral 9 1.00 0.000 j4_v3_neutral_affect 9 1.00 0.000 to 9 1.00 0.000 k1_f1_child 8 0.89 0.151 k2_c0_compliance_behavior 6 0.75 0.311 k3_q1_positive 6 1.00 0.000 k4_v3_neutral_affect 6 1.00 0.000 at 6 1.00 0.000 n5 1 0.17 0.431 * 1 1.00 0.000 n46 1 0.17 0.431 * 1 1.00 0.000 n67 1 0.17 0.431 * 1 1.00 0.000 n93 1 0.17 0.431 * 1 1.00 0.000 n130 1 0.17 0.431 * 1 1.00 0.000 n172 1 0.17 0.431 * 1 1.00 0.000 k2_c6_vocal_behavior 2 0.25 0.500 k3_q2_neutral 2 1.00 0.000 k4_v2_positive_affect 2 1.00 0.000 at 2 1.00 0.000 n19 1 0.50 0.500 * 1 1.00 0.000 n21 1 0.50 0.500 * 1 1.00 0.000 k1_f3_mother 1 0.11 0.352 k2_c3_clear_directive 1 1.00 0.000 k3_q2_neutral 1 1.00 0.000 k4_v3_neutral_affect 1 1.00 0.000 at 1 1.00 0.000 n129 1 1.00 0.000 * 1 1.00 0.000 j2_c0_compliance_behavior 3 0.04 0.170 j3_q1_positive 3 1.00 0.000 j4_v3_neutral_affect 3 1.00 0.000 to 3 1.00 0.000 k1_f1_child 2 0.67 0.390 k2_c1_conversation 2 1.00 0.000 k3_q2_neutral 2 1.00 0.000 k4_v3_neutral_affect 1 0.50 0.500 at 1 1.00 0.000 n50 1 1.00 0.000 * 1 1.00 0.000 k4_v4_negative_affect 1 0.50 0.500 at 1 1.00 0.000 n64 1 1.00 0.000 * 1 1.00 0.000 k1_f#_null_value 1 0.33 0.528 k2_c#_null_value 1 1.00 0.000 k3_q#_null_value 1 1.00 0.000 k4_v#_null_value 1 1.00 0.000 at 1 1.00 0.000 n8 1 1.00 0.000 * 1 1.00 0.000 j2_c6_vocal_behavior 5 0.06 0.240 j3_q2_neutral 5 1.00 0.000 j4_v2_positive_affect 4 0.80 0.258 to 4 1.00 0.000 k1_f1_child 3 0.75 0.311 k2_c6_vocal_behavior 2 0.67 0.390 k3_q2_neutral 2 1.00 0.000 k4_v2_positive_affect 2 1.00 0.000 at 2 1.00 0.000 n32 1 0.50 0.500 * 1 1.00 0.000 n126 1 0.50 0.500 * 1 1.00 0.000 k2_c1_conversation 1 0.33 0.528 k3_q2_neutral 1 1.00 0.000 k4_v3_neutral_affect 1 1.00 0.000 at 1 1.00 0.000 n104 1 1.00 0.000 * 1 1.00 0.000 k1_f3_mother 1 0.25 0.500 k2_c2_affiliate/distance 1 1.00 0.000 k3_q2_neutral 1 1.00 0.000 k4_v2_positive_affect 1 1.00 0.000 at 1 1.00 0.000 n158 1 1.00 0.000 * 1 1.00 0.000 j4_v3_neutral_affect 1 0.20 0.464 to 1 1.00 0.000 k1_f3_mother 1 1.00 0.000 k2_c3_clear_directive 1 1.00 0.000 k3_q2_neutral 1 1.00 0.000 k4_v3_neutral_affect 1 1.00 0.000 at 1 1.00 0.000 n18 1 1.00 0.000 * 1 1.00 0.000 j2_c5_response_to_directive 3 0.04 0.170 j3_q1_positive 3 1.00 0.000 j4_v3_neutral_affect 3 1.00 0.000 to 3 1.00 0.000 k1_f3_mother 2 0.67 0.390 k2_c1_conversation 2 1.00 0.000 k3_q2_neutral 2 1.00 0.000 k4_v3_neutral_affect 2 1.00 0.000 at 2 1.00 0.000 n48 1 0.50 0.500 * 1 1.00 0.000 n61 1 0.50 0.500 * 1 1.00 0.000 k1_f1_child 1 0.33 0.528 k2_c1_conversation 1 1.00 0.000 k3_q2_neutral 1 1.00 0.000 k4_v3_neutral_affect 1 1.00 0.000 at 1 1.00 0.000 n83 1 1.00 0.000 * 1 1.00 0.000 j2_c2_affiliate/distance 1 0.01 0.075 j3_q2_neutral 1 1.00 0.000 j4_v2_positive_affect 1 1.00 0.000 to 1 1.00 0.000 k1_f1_child 1 1.00 0.000 k2_c6_vocal_behavior 1 1.00 0.000 k3_q2_neutral 1 1.00 0.000 k4_v2_positive_affect 1 1.00 0.000 at 1 1.00 0.000 n159 1 1.00 0.000 * 1 1.00 0.000 j1_f1_child 83 0.47 0.510 j2_c1_conversation 52 0.63 0.423 j3_q2_neutral 51 0.98 0.027 j4_v3_neutral_affect 30 0.59 0.450 to 30 1.00 0.000 k1_f3_mother 30 1.00 0.000 k2_c1_conversation 26 0.87 0.179 k3_q2_neutral 24 0.92 0.107 k4_v3_neutral_affect 22 0.92 0.115 at 22 1.00 0.000 n25 1 0.05 0.203 * 1 1.00 0.000 n51 1 0.05 0.203 * 1 1.00 0.000 n53 1 0.05 0.203 * 1 1.00 0.000 n72 1 0.05 0.203 * 1 1.00 0.000 n84 1 0.05 0.203 * 1 1.00 0.000 n86 1 0.05 0.203 * 1 1.00 0.000 n88 1 0.05 0.203 * 1 1.00 0.000 n90 1 0.05 0.203 * 1 1.00 0.000 n97 1 0.05 0.203 * 1 1.00 0.000 n99 1 0.05 0.203 * 1 1.00 0.000 n101 1 0.05 0.203 * 1 1.00 0.000 n105 1 0.05 0.203 * 1 1.00 0.000 n107 1 0.05 0.203 * 1 1.00 0.000 n113 1 0.05 0.203 * 1 1.00 0.000 n118 1 0.05 0.203 * 1 1.00 0.000 n122 1 0.05 0.203 * 1 1.00 0.000 n124 1 0.05 0.203 * 1 1.00 0.000 n134 1 0.05 0.203 * 1 1.00 0.000 n136 1 0.05 0.203 * 1 1.00 0.000 n147 1 0.05 0.203 * 1 1.00 0.000 n162 1 0.05 0.203 * 1 1.00 0.000 n174 1 0.05 0.203 * 1 1.00 0.000 k4_v2_positive_affect 2 0.08 0.299 at 2 1.00 0.000 n11 1 0.50 0.500 * 1 1.00 0.000 n120 1 0.50 0.500 * 1 1.00 0.000 k3_q1_positive 2 0.08 0.285 k4_v2_positive_affect 2 1.00 0.000 at 2 1.00 0.000 n95 1 0.50 0.500 * 1 1.00 0.000 n138 1 0.50 0.500 * 1 1.00 0.000 k2_c6_vocal_behavior 1 0.03 0.164 k3_q2_neutral 1 1.00 0.000 k4_v3_neutral_affect 1 1.00 0.000 at 1 1.00 0.000 n17 1 1.00 0.000 * 1 1.00 0.000 k2_c0_compliance_behavior 1 0.03 0.164 k3_q1_positive 1 1.00 0.000 k4_v3_neutral_affect 1 1.00 0.000 at 1 1.00 0.000 n63 1 1.00 0.000 * 1 1.00 0.000 k2_c3_clear_directive 1 0.03 0.164 k3_q2_neutral 1 1.00 0.000 k4_v3_neutral_affect 1 1.00 0.000 at 1 1.00 0.000 n92 1 1.00 0.000 * 1 1.00 0.000 k2_c4_ambiguous_directive 1 0.03 0.164 k3_q2_neutral 1 1.00 0.000 k4_v3_neutral_affect 1 1.00 0.000 at 1 1.00 0.000 n3 1 1.00 0.000 * 1 1.00 0.000 j4_v2_positive_affect 19 0.37 0.531 to 19 1.00 0.000 k1_f3_mother 12 0.63 0.419 k2_c1_conversation 11 0.92 0.115 k3_q2_neutral 10 0.91 0.125 k4_v3_neutral_affect 7 0.70 0.360 at 7 1.00 0.000 n13 1 0.14 0.401 * 1 1.00 0.000 n29 1 0.14 0.401 * 1 1.00 0.000 n58 1 0.14 0.401 * 1 1.00 0.000 n70 1 0.14 0.401 * 1 1.00 0.000 n80 1 0.14 0.401 * 1 1.00 0.000 n111 1 0.14 0.401 * 1 1.00 0.000 n155 1 0.14 0.401 * 1 1.00 0.000 k4_v2_positive_affect 3 0.30 0.521 at 3 1.00 0.000 n34 1 0.33 0.528 * 1 1.00 0.000 n109 1 0.33 0.528 * 1 1.00 0.000 n143 1 0.33 0.528 * 1 1.00 0.000 k3_q3_negative 1 0.09 0.314 k4_v4_negative_affect 1 1.00 0.000 at 1 1.00 0.000 n168 1 1.00 0.000 * 1 1.00 0.000 k2_c6_vocal_behavior 1 0.08 0.299 k3_q2_neutral 1 1.00 0.000 k4_v2_positive_affect 1 1.00 0.000 at 1 1.00 0.000 n31 1 1.00 0.000 * 1 1.00 0.000 k1_f#_null_value 2 0.11 0.342 k2_c#_null_value 2 1.00 0.000 k3_q#_null_value 2 1.00 0.000 k4_v#_null_value 2 1.00 0.000 at 2 1.00 0.000 n15 1 0.50 0.500 * 1 1.00 0.000 n164 1 0.50 0.500 * 1 1.00 0.000 k1_f1_child 5 0.26 0.507 k2_c6_vocal_behavior 4 0.80 0.258 k3_q2_neutral 4 1.00 0.000 k4_v2_positive_affect 4 1.00 0.000 at 4 1.00 0.000 n36 1 0.25 0.500 * 1 1.00 0.000 n38 1 0.25 0.500 * 1 1.00 0.000 n41 1 0.25 0.500 * 1 1.00 0.000 n55 1 0.25 0.500 * 1 1.00 0.000 k2_c1_conversation 1 0.20 0.464 k3_q2_neutral 1 1.00 0.000 k4_v1_exuberant_affect 1 1.00 0.000 at 1 1.00 0.000 n75 1 1.00 0.000 * 1 1.00 0.000 j4_v4_negative_affect 1 0.02 0.111 to 1 1.00 0.000 k1_f3_mother 1 1.00 0.000 k2_c1_conversation 1 1.00 0.000 k3_q2_neutral 1 1.00 0.000 k4_v2_positive_affect 1 1.00 0.000 at 1 1.00 0.000 n65 1 1.00 0.000 * 1 1.00 0.000 j4_v1_exuberant_affect 1 0.02 0.111 to 1 1.00 0.000 k1_f3_mother 1 1.00 0.000 k2_c4_ambiguous_directive 1 1.00 0.000 k3_q2_neutral 1 1.00 0.000 k4_v3_neutral_affect 1 1.00 0.000 at 1 1.00 0.000 n76 1 1.00 0.000 * 1 1.00 0.000 j3_q1_positive 1 0.02 0.110 j4_v3_neutral_affect 1 1.00 0.000 to 1 1.00 0.000 k1_f3_mother 1 1.00 0.000 k2_c1_conversation 1 1.00 0.000 k3_q1_positive 1 1.00 0.000 k4_v3_neutral_affect 1 1.00 0.000 at 1 1.00 0.000 n149 1 1.00 0.000 * 1 1.00 0.000 j2_c0_compliance_behavior 9 0.11 0.348 j3_q1_positive 9 1.00 0.000 j4_v3_neutral_affect 9 1.00 0.000 to 9 1.00 0.000 k1_f3_mother 5 0.56 0.471 k2_c1_conversation 4 0.80 0.258 k3_q2_neutral 3 0.75 0.311 k4_v3_neutral_affect 3 1.00 0.000 at 3 1.00 0.000 n68 1 0.33 0.528 * 1 1.00 0.000 n78 1 0.33 0.528 * 1 1.00 0.000 n132 1 0.33 0.528 * 1 1.00 0.000 k3_q1_positive 1 0.25 0.500 k4_v3_neutral_affect 1 1.00 0.000 at 1 1.00 0.000 n116 1 1.00 0.000 * 1 1.00 0.000 k2_c5_response_to_directive 1 0.20 0.464 k3_q1_positive 1 1.00 0.000 k4_v3_neutral_affect 1 1.00 0.000 at 1 1.00 0.000 n47 1 1.00 0.000 * 1 1.00 0.000 k1_f1_child 4 0.44 0.520 k2_c1_conversation 2 0.50 0.500 k3_q2_neutral 2 1.00 0.000 k4_v3_neutral_affect 2 1.00 0.000 at 2 1.00 0.000 n94 1 0.50 0.500 * 1 1.00 0.000 n173 1 0.50 0.500 * 1 1.00 0.000 k2_c0_compliance_behavior 1 0.25 0.500 k3_q1_positive 1 1.00 0.000 k4_v3_neutral_affect 1 1.00 0.000 at 1 1.00 0.000 n131 1 1.00 0.000 * 1 1.00 0.000 k2_c4_ambiguous_directive 1 0.25 0.500 k3_q2_neutral 1 1.00 0.000 k4_v3_neutral_affect 1 1.00 0.000 at 1 1.00 0.000 n6 1 1.00 0.000 * 1 1.00 0.000 j2_c4_ambiguous_directive 1 0.01 0.077 j3_q2_neutral 1 1.00 0.000 j4_v3_neutral_affect 1 1.00 0.000 to 1 1.00 0.000 k1_f3_mother 1 1.00 0.000 k2_c0_compliance_behavior 1 1.00 0.000 k3_q1_positive 1 1.00 0.000 k4_v3_neutral_affect 1 1.00 0.000 at 1 1.00 0.000 n7 1 1.00 0.000 * 1 1.00 0.000 j2_c6_vocal_behavior 19 0.23 0.487 j3_q2_neutral 19 1.00 0.000 j4_v2_positive_affect 17 0.89 0.144 to 17 1.00 0.000 k1_f3_mother 13 0.76 0.296 k2_c1_conversation 10 0.77 0.291 k3_q2_neutral 7 0.70 0.360 k4_v3_neutral_affect 6 0.86 0.191 at 6 1.00 0.000 n39 1 0.17 0.431 * 1 1.00 0.000 n44 1 0.17 0.431 * 1 1.00 0.000 n141 1 0.17 0.431 * 1 1.00 0.000 n145 1 0.17 0.431 * 1 1.00 0.000 n160 1 0.17 0.431 * 1 1.00 0.000 n166 1 0.17 0.431 * 1 1.00 0.000 k4_v2_positive_affect 1 0.14 0.401 at 1 1.00 0.000 n42 1 1.00 0.000 * 1 1.00 0.000 k3_q1_positive 1 0.10 0.332 k4_v2_positive_affect 1 1.00 0.000 at 1 1.00 0.000 n152 1 1.00 0.000 * 1 1.00 0.000 k3_q3_negative 2 0.20 0.464 k4_v2_positive_affect 2 1.00 0.000 at 2 1.00 0.000 n22 1 0.50 0.500 * 1 1.00 0.000 n127 1 0.50 0.500 * 1 1.00 0.000 k2_c6_vocal_behavior 1 0.08 0.285 k3_q2_neutral 1 1.00 0.000 k4_v2_positive_affect 1 1.00 0.000 at 1 1.00 0.000 n157 1 1.00 0.000 * 1 1.00 0.000 k2_c3_clear_directive 2 0.15 0.415 k3_q2_neutral 2 1.00 0.000 k4_v3_neutral_affect 2 1.00 0.000 at 2 1.00 0.000 n20 1 0.50 0.500 * 1 1.00 0.000 n171 1 0.50 0.500 * 1 1.00 0.000 k1_f1_child 3 0.18 0.442 k2_c1_conversation 3 1.00 0.000 k3_q2_neutral 3 1.00 0.000 k4_v2_positive_affect 3 1.00 0.000 at 3 1.00 0.000 n33 1 0.33 0.528 * 1 1.00 0.000 n37 1 0.33 0.528 * 1 1.00 0.000 n154 1 0.33 0.528 * 1 1.00 0.000 k1_f#_null_value 1 0.06 0.240 k2_c#_null_value 1 1.00 0.000 k3_q#_null_value 1 1.00 0.000 k4_v#_null_value 1 1.00 0.000 at 1 1.00 0.000 n56 1 1.00 0.000 * 1 1.00 0.000 j4_v3_neutral_affect 2 0.11 0.342 to 2 1.00 0.000 k1_f1_child 1 0.50 0.500 k2_c1_conversation 1 1.00 0.000 k3_q2_neutral 1 1.00 0.000 k4_v2_positive_affect 1 1.00 0.000 at 1 1.00 0.000 n74 1 1.00 0.000 * 1 1.00 0.000 k1_f3_mother 1 0.50 0.500 k2_c6_vocal_behavior 1 1.00 0.000 k3_q2_neutral 1 1.00 0.000 k4_v2_positive_affect 1 1.00 0.000 at 1 1.00 0.000 n103 1 1.00 0.000 * 1 1.00 0.000 j2_c3_clear_directive 2 0.02 0.130 j3_q2_neutral 1 0.50 0.500 j4_v3_neutral_affect 1 1.00 0.000 to 1 1.00 0.000 k1_f3_mother 1 1.00 0.000 k2_c5_response_to_directive 1 1.00 0.000 k3_q1_positive 1 1.00 0.000 k4_v3_neutral_affect 1 1.00 0.000 at 1 1.00 0.000 n60 1 1.00 0.000 * 1 1.00 0.000 j3_q1_positive 1 0.50 0.500 j4_v3_neutral_affect 1 1.00 0.000 to 1 1.00 0.000 k1_f3_mother 1 1.00 0.000 k2_c5_response_to_directive 1 1.00 0.000 k3_q1_positive 1 1.00 0.000 k4_v3_neutral_affect 1 1.00 0.000 at 1 1.00 0.000 n82 1 1.00 0.000 * 1 1.00 0.000 j1_f#_null_value 7 0.04 0.186 j2_c#_null_value 7 1.00 0.000 j3_q#_null_value 7 1.00 0.000 j4_v#_null_value 7 1.00 0.000 to 7 1.00 0.000 k1_f1_child 4 0.57 0.461 k2_c1_conversation 3 0.75 0.311 k3_q2_neutral 3 1.00 0.000 k4_v3_neutral_affect 2 0.67 0.390 at 2 1.00 0.000 n16 1 0.50 0.500 * 1 1.00 0.000 n24 1 0.50 0.500 * 1 1.00 0.000 k4_v2_positive_affect 1 0.33 0.528 at 1 1.00 0.000 n57 1 1.00 0.000 * 1 1.00 0.000 k2_c6_vocal_behavior 1 0.25 0.500 k3_q2_neutral 1 1.00 0.000 k4_v2_positive_affect 1 1.00 0.000 at 1 1.00 0.000 n165 1 1.00 0.000 * 1 1.00 0.000 k1_f3_mother 3 0.43 0.524 k2_c1_conversation 3 1.00 0.000 k3_q1_positive 2 0.67 0.390 k4_v3_neutral_affect 1 0.50 0.500 at 1 1.00 0.000 n9 1 1.00 0.000 * 1 1.00 0.000 k4_v2_positive_affect 1 0.50 0.500 at 1 1.00 0.000 n27 1 1.00 0.000 * 1 1.00 0.000 k3_q2_neutral 1 0.33 0.528 k4_v3_neutral_affect 1 1.00 0.000 at 1 1.00 0.000 n1 1 1.00 0.000 * 1 1.00 0.000
Document History
2003 • Inquiry List • Sequential Interactions Generating Hypotheses
- http://web.archive.org/web/20120518012303/http://stderr.org/pipermail/inquiry/2003-August/thread.html#753
- http://web.archive.org/web/20120505135759/http://stderr.org/pipermail/inquiry/2003-September/thread.html#778
- http://web.archive.org/web/20040906141818/http://stderr.org/pipermail/inquiry/2003-August/000753.html
- http://web.archive.org/web/20040906141758/http://stderr.org/pipermail/inquiry/2003-August/000754.html
- http://web.archive.org/web/20040906141706/http://stderr.org/pipermail/inquiry/2003-August/000755.html
- http://web.archive.org/web/20040906141842/http://stderr.org/pipermail/inquiry/2003-August/000763.html
- http://web.archive.org/web/20040906141742/http://stderr.org/pipermail/inquiry/2003-August/000764.html
- http://web.archive.org/web/20040906141701/http://stderr.org/pipermail/inquiry/2003-August/000765.html
- http://web.archive.org/web/20040906141745/http://stderr.org/pipermail/inquiry/2003-August/000766.html
- http://web.archive.org/web/20040907185539/http://stderr.org/pipermail/inquiry/2003-August/000767.html
- http://web.archive.org/web/20040907185559/http://stderr.org/pipermail/inquiry/2003-August/000768.html
- http://web.archive.org/web/20040907185627/http://stderr.org/pipermail/inquiry/2003-August/000769.html
- http://web.archive.org/web/20040907185620/http://stderr.org/pipermail/inquiry/2003-August/000770.html
- http://web.archive.org/web/20040907185456/http://stderr.org/pipermail/inquiry/2003-August/000771.html
- http://web.archive.org/web/20040907185500/http://stderr.org/pipermail/inquiry/2003-August/000772.html
- http://web.archive.org/web/20061014001124/http://stderr.org/pipermail/inquiry/2003-September/000778.html
2003 • Ontology List • Sequential Interactions Generating Hypotheses
- http://web.archive.org/web/20070307044513/http://suo.ieee.org/ontology/msg05003.html
- http://web.archive.org/web/20070313230835/http://suo.ieee.org/ontology/msg05004.html
- http://web.archive.org/web/20070306151612/http://suo.ieee.org/ontology/msg05005.html
- http://web.archive.org/web/20070313230845/http://suo.ieee.org/ontology/msg05013.html
- http://web.archive.org/web/20070313230856/http://suo.ieee.org/ontology/msg05014.html
- http://web.archive.org/web/20070313230905/http://suo.ieee.org/ontology/msg05015.html
- http://web.archive.org/web/20070313230915/http://suo.ieee.org/ontology/msg05016.html
- http://web.archive.org/web/20070313230925/http://suo.ieee.org/ontology/msg05017.html
- http://web.archive.org/web/20070313230936/http://suo.ieee.org/ontology/msg05018.html
- http://web.archive.org/web/20070308214231/http://suo.ieee.org/ontology/msg05020.html
- http://web.archive.org/web/20070310141005/http://suo.ieee.org/ontology/msg05021.html
- http://web.archive.org/web/20070313230946/http://suo.ieee.org/ontology/msg05022.html
- http://web.archive.org/web/20070307044524/http://suo.ieee.org/ontology/msg05023.html
- http://web.archive.org/web/20070307044535/http://suo.ieee.org/ontology/msg05025.html