This site is supported by donations to
The OEIS Foundation
.
User:Jaume Oliver Lafont/Sum of Reciprocals of Tetrahedral Numbers
From OeisWiki
<
User:Jaume Oliver Lafont
Jump to:
navigation
,
search
∑
n
=
1
∞
6
n
(
n
+
1
)
(
n
+
2
)
=
∑
n
=
1
∞
3
n
(
n
+
1
)
−
∑
n
=
1
∞
3
(
n
+
1
)
(
n
+
2
)
{\displaystyle \sum _{n=1}^{\infty }{\frac {6}{n(n+1)(n+2)}}=\sum _{n=1}^{\infty }{\frac {3}{n(n+1)}}-\sum _{n=1}^{\infty }{\frac {3}{(n+1)(n+2)}}}
=
∑
n
=
1
∞
3
n
(
n
+
1
)
−
∑
n
=
2
∞
3
n
(
n
+
1
)
{\displaystyle =\sum _{n=1}^{\infty }{\frac {3}{n(n+1)}}-\sum _{n=2}^{\infty }{\frac {3}{n(n+1)}}}
=
3
2
+
∑
n
=
2
∞
3
n
(
n
+
1
)
−
∑
n
=
2
∞
3
n
(
n
+
1
)
=
3
2
{\displaystyle ={\frac {3}{2}}+\sum _{n=2}^{\infty }{\frac {3}{n(n+1)}}-\sum _{n=2}^{\infty }{\frac {3}{n(n+1)}}={\frac {3}{2}}}
(
A000292
)
Navigation menu
Views
User page
Discussion
View source
History
Personal tools
Log in
Request account
Navigation
OEIS
Wiki Main Page
Community portal
System Status
Recent changes
Random page
Help
Search
Advanced search
Tools
What links here
Related changes
User contributions
Logs
View user groups
Special pages
Printable version
Permanent link
Page information