This site is supported by donations to The OEIS Foundation.
Gnomonic numbers
The gnomonic numbers are zero followed by the arithmetic progressions Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \scriptstyle a+(n-1)b,\ (a,b) = 1,\ n \ge 1\,} restricted to a = 1, thus giving Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \scriptstyle a+(n-1)b - (a-b) 0^n,\ (a,b) = 1,\ n \ge 0\,} restricted to a = 1, which is the only case where all positive integer values of b are coprime to a, thus the b-step gnomonic numbers are given by .
The gnomonic number Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \scriptstyle 1+(n-1)b - (1-b) 0^n,\ n \ge 0\,} is the difference between the nth regular convex W-gonal number and the (n-1)th regular convex W-gonal number, where W = b + 2. [1] Gnomonic numbers are frequently assumed to be the square gnomonic numbers, since the original (square) gnomonic numbers where named after the shape corresponding to the differences between two succesive squares.[2]
All figurate numbers are accessible via this structured menu: Classifications of figurate numbers
Contents
- 1 Formulae
- 2 Schläfli-Poincaré (convex) polytope formula
- 3 Recurrence equation
- 4 Generating function
- 5 Order of basis
- 6 Differences
- 7 Partial sums
- 8 Partial sums of reciprocals
- 9 Sum of reciprocals
- 10 Table of formulae and values
- 11 Table of related formulae and values
- 12 Table of sequences
- 13 See also
- 14 Notes
- 15 External links
Formulae
The nth b-step, or W-gonal, b = B-1, W = B+1, gnomonic (the number of sides of a polygon being equal to its number of vertices,) number is given by the formula:[3]
where
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle B = b + 1 = W - 1 \ge 2,\,}
and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \scriptstyle P^{(2)}_{W}(n)\,} is the nth W-gonal number.
The choices of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \scriptstyle B = b + 1 = W - 1 \ge 2\,} for labelling the gnomonic numbers and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \scriptstyle P^{(1)}_{B}(0) = 0,\ P^{(1)}_{B}(1) = 1\,} are motivated by the patterns of the (1,k)-Pascal triangle and the (k,1)-Pascal triangle.
These choices are also ideal to highlight the symmetry, for :
where
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle B = b + 1 = W - 1 \ge 2.\,}
Schläfli-Poincaré (convex) polytope formula
Schläfli-Poincaré generalization of the Descartes-Euler (convex) polyhedral formula.[4]
For 1-dimensional (d = 1) regular convex polygonal gnomons:
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle {\sum_{i=0}^{d-1} (-1)^i N_i} = N_0 = V = 2,\,}
where N0 is the number of 0-dimensional elements (vertices V) of the regular convex polygon gnomon, which is always 2.
Recurrence equation
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle P^{(1)}_{B}(n) = P^{(1)}_{B}(n-1) + (B-1),\ n \ge 2,\,}
with initial conditions
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle P^{(1)}_{B}(0) = 0,\,}
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle P^{(1)}_{B}(1) = 1,\,}
where
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle B = b + 1 = W - 1\ \ge 2.\,}
Generating function
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle G_{\{P^{(1)}_{B}(n)\}}(x) = \frac{x\{1+(B-2)x\}}{(1-x)^2},\,}
where
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle B = b + 1 = W - 1\ \ge 2.\,}
Order of basis
The order of basis of W-gonal gnomonic numbers is:
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle g_{\{P^{(1)}_{B}\}} = B-1,\,}
where
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle B = b + 1 = W - 1\ \ge 2.\,}
The order of basis g for numbers of the form Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \scriptstyle kn+1,\ k > 0\,} is k, since to represent the numbers in the congruence classes Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \scriptstyle \{0, 1, ..., k-1\}\,} by adding numbers congruent to Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \scriptstyle 1 \mod k\,} we need as many terms as the class number, for each congruence classes, e.g. for Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \scriptstyle k = 5\,} :
- numbers of form Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \scriptstyle 5n+1\,} are expressible as 1 term of the form Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \scriptstyle 5n+1\,} ;
- numbers of form Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \scriptstyle 5n+2\,} are expressible as the sum of 2 terms of the form Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \scriptstyle 5n+1\,} ;
- numbers of form Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \scriptstyle 5n+3\,} are expressible as the sum of 3 terms of the form Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \scriptstyle 5n+1\,} ;
- numbers of form Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \scriptstyle 5n+4\,} are expressible as the sum of 4 terms of the form Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \scriptstyle 5n+1\,} ;
- numbers of form are expressible as the sum of 5 terms of the form Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \scriptstyle 5n+1\,} .
In 1638, Fermat proposed that every positive integer is a sum of at most three triangular numbers, four square numbers, five pentagonal numbers, and k k-polygonal numbers. Fermat claimed to have a proof of this result, although Fermat's proof has never been found. Joseph Louis Lagrange proved the square case (known as the four squares theorem[5]) in 1770 and Gauss proved the triangular case in 1796. In 1813, Cauchy finally proved the horizontal generalization that every nonnegative integer can be written as a sum of k k-gon numbers (known as the polygonal number theorem,[5]) while a vertical (higher dimensional) generalization has also been made (known as the Hilbert-Waring problem.)
A nonempty subset A of nonnegative integers is called a basis of order g if g is the minimum number with the property that every nonnegative integer can be written as a sum of g elements in A. Lagrange’s sum of four squares can be restated as the set Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \scriptstyle \{n^2|n = 0, 1, 2, \ldots\}\,} of nonnegative squares forms a basis of order 4.
Theorem (Cauchy) For every Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \scriptstyle k \ge 3} , the set Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \scriptstyle \{P(k, n)|n = 0, 1, 2, \ldots\}\,} of k-gon numbers forms a basis of order k, i.e. every nonnegative integer can be written as a sum of k k-gon numbers.
We note that polygonal numbers are two dimensional analogues of squares. Obviously, cubes, fourth powers, fifth powers, ... are higher dimensional analogues of squares. In 1770, Waring stated without proof that every nonnegative integer can be written as a sum of 4 squares, 9 cubes, 19 fourth powers, and so on. In 1909, Hilbert proved that there is a finite number Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \scriptstyle g(d)\,} such that every nonnegative integer is a sum of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \scriptstyle d\,} th powers, i.e. the set Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \scriptstyle \{n^d|n = 0, 1, 2, \ldots\}\,} of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \scriptstyle d\,} th powers forms a basis of order Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \scriptstyle g(d)\,} . The Hilbert-Waring problem[6] is concerned with the study of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \scriptstyle g(d)\,} for Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \scriptstyle d \ge 2\,} . This problem was one of the most important research topics in additive number theory in last 90 years, and it is still a very active area of research.
In 1997, Conway et al. proved a theorem, called the fifteen theorem,[7] which states that, if a positive definite quadratic form with integer matrix entries represents all natural numbers up to 15, then it represents all natural numbers. This theorem contains Lagrange's four-square theorem, since every number up to 15 is the sum of at most four squares.
Differences
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle P^{(1)}_{B}(n) - P^{(1)}_{B}(n-1) = 0\,\ n = 0,}
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle P^{(1)}_{B}(n) - P^{(1)}_{B}(n-1) = 1\,\ n = 1,}
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle P^{(1)}_{B}(n) - P^{(1)}_{B}(n-1) = B-1,\ n \ge 2,\,}
where
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle B = b + 1 = W - 1 \ge 2.\,}
Partial sums
-
- Failed to parse (Conversion error. Server ("https://en.wikipedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle =m+(B-1){(m-1)m \over 2}={\frac {m}{2}}[(B-1)m-(B-3)],\,}
where
and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \scriptstyle P^{(2)}_{3}(m) = T_m\,} is the mth triangular number.
Partial sums of reciprocals
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \sum_{n=1}^m \frac{1}{P^{(1)}_{B}(n)} = \frac{\psi(m+\frac{1}{B-1})-\psi(\frac{1}{B-1})}{B-1},\,}
where
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle B = b + 1 = W - 1 \ge 2.\,}
and is the digamma function.[8] [9]
Sum of reciprocals
where
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle B = b + 1 = W - 1 \ge 2.\,}
The infinite series diverges logarithmically, i.e.:
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \sum_{n=1}^m \frac{1}{P^{(1)}_{B}(n)} \sim O(log(m)),\,} as Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle m \to \infty.\,}
Table of formulae and values
For Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \scriptstyle n \ge 2\,} , we have:
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle P^{(1)}_{B}(n) = P^{(1)}_{n}(B),\,}
where
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle B = b + 1 = W - 1 \ge 2.\,}
Polygonal gnomon numbers associated with constructible polygons (with straightedge and compass) are named in bold.
B | Name | Formulae
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle P^{(1)}_{B}(n) =\,}
|
n = 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | OEIS
number |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2 | Trigonal gnomons | Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle n\,} | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | A001477(n) |
3 | Tetragonal gnomons | Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle 1 + 2 (n-1) + 0^n\,} | 0 | 1 | 3 | 5 | 7 | 9 | 11 | 13 | 15 | 17 | 19 | 21 | 23 | A004273(n)
A005408(n-1) |
4 | Pentagonal gnomons | Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle 1 + 3 (n-1) + 2\ 0^n\,} | 0 | 1 | 4 | 7 | 10 | 13 | 16 | 19 | 22 | 25 | 28 | 31 | 34 | A016777(n-1) |
5 | Hexagonal gnomons | Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle 1 + 4 (n-1) + 3\ 0^n\,} | 0 | 1 | 5 | 9 | 13 | 17 | 21 | 25 | 29 | 33 | 37 | 41 | 45 | A016813(n-1) |
6 | Heptagonal gnomons | Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle 1 + 5 (n-1) + 4\ 0^n\,} | 0 | 1 | 6 | 11 | 16 | 21 | 26 | 31 | 36 | 41 | 46 | 51 | 56 | A016861(n-1) |
7 | Octagonal gnomons | Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle 1 + 6 (n-1) + 5\ 0^n\,} | 0 | 1 | 7 | 13 | 19 | 25 | 31 | 37 | 43 | 49 | 55 | 61 | 67 | A016921(n-1) |
8 | Nonagonal gnomons | Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle 1 + 7 (n-1) + 6\ 0^n\,} | 0 | 1 | 8 | 15 | 22 | 29 | 36 | 43 | 50 | 57 | 64 | 71 | 78 | A016993(n-1) |
9 | Decagonal gnomons | Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle 1 + 8 (n-1) + 7\ 0^n\,} | 0 | 1 | 9 | 17 | 25 | 33 | 41 | 49 | 57 | 65 | 73 | 81 | 89 | A017077(n-1) |
10 | Hendecagonal gnomons | Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle 1 + 9 (n-1) + 8\ 0^n\,} | 0 | 1 | 10 | 19 | 28 | 37 | 46 | 55 | 64 | 73 | 82 | 91 | 100 | A017173(n-1) |
11 | Dodecagonal gnomons | Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle 1 + 10 (n-1) + 9\ 0^n\,} | 0 | 1 | 11 | 21 | 31 | 41 | 51 | 61 | 71 | 81 | 91 | 101 | 111 | A017281(n-1) |
12 | Tridecagonal gnomons | Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle 1 + 11 (n-1) + 10\ 0^n\,} | 0 | 1 | 12 | 23 | 34 | 45 | 56 | 67 | 78 | 89 | 100 | 111 | 122 | A017401(n-1) |
13 | Tetradecagonal gnomons | Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle 1 + 12 (n-1) + 11\ 0^n\,} | 0 | 1 | 13 | 25 | 37 | 49 | 61 | 73 | 85 | 97 | 109 | 121 | 133 | A017533(n-1) |
14 | Pentadecagonal gnomons | Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle 1 + 13 (n-1) + 12\ 0^n\,} | 0 | 1 | 14 | 27 | 40 | 53 | 66 | 79 | 92 | 105 | 118 | 131 | 144 | A?????? |
15 | Hexadecagonal gnomons | Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle 1 + 14 (n-1) + 13\ 0^n\,} | 0 | 1 | 15 | 29 | 43 | 57 | 71 | 85 | 99 | 113 | 127 | 141 | 155 | A?????? |
16 | Heptadecagonal gnomons | Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle 1 + 15 (n-1) + 14\ 0^n\,} | 0 | 1 | 16 | 31 | 46 | 61 | 76 | 91 | 106 | 121 | 136 | 151 | 166 | A?????? |
17 | Octadecagonal gnomons | Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle 1 + 16 (n-1) + 15\ 0^n\,} | 0 | 1 | 17 | 33 | 49 | 65 | 81 | 97 | 113 | 129 | 145 | 161 | 177 | A?????? |
18 | Nonadecagonal gnomons | Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle 1 + 17 (n-1) + 16\ 0^n\,} | 0 | 1 | 18 | 35 | 52 | 69 | 86 | 103 | 120 | 137 | 154 | 171 | 188 | A?????? |
19 | Icosagonal gnomons | Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle 1 + 18 (n-1) + 17\ 0^n\,} | 0 | 1 | 19 | 37 | 55 | 73 | 91 | 109 | 127 | 145 | 163 | 181 | 199 | A?????? |
20 | Icosihenagonal gnomons | Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle 1 + 19 (n-1) + 18\ 0^n\,} | 0 | 1 | 20 | 39 | 58 | 77 | 96 | 115 | 134 | 153 | 172 | 191 | 210 | A?????? |
21 | Icosidigonal gnomons | Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle 1 + 20 (n-1) + 19\ 0^n\,} | 0 | 1 | 21 | 41 | 61 | 81 | 101 | 121 | 141 | 161 | 181 | 201 | 221 | A?????? |
22 | Icositrigonal gnomons | Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle 1 + 21 (n-1) + 20\ 0^n\,} | 0 | 1 | 22 | 43 | 64 | 85 | 106 | 127 | 148 | 169 | 190 | 211 | 232 | A?????? |
23 | Icositetragonal gnomons | Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle 1 + 22 (n-1) + 21\ 0^n\,} | 0 | 1 | 23 | 45 | 67 | 89 | 111 | 133 | 155 | 177 | 199 | 221 | 243 | A?????? |
24 | Icosipentagonal gnomons | Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle 1 + 23 (n-1) + 22\ 0^n\,} | 0 | 1 | 24 | 47 | 70 | 93 | 116 | 139 | 162 | 185 | 208 | 231 | 254 | A?????? |
25 | Icosihexagonal gnomons | Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle 1 + 24 (n-1) + 23\ 0^n\,} | 0 | 1 | 25 | 49 | 73 | 97 | 121 | 145 | 169 | 193 | 217 | 241 | 265 | A?????? |
26 | Icosiheptagonal gnomons | Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle 1 + 25 (n-1) + 24\ 0^n\,} | 0 | 1 | 26 | 51 | 76 | 101 | 126 | 151 | 176 | 201 | 226 | 251 | 276 | A?????? |
27 | Icosioctagonal gnomons | Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle 1 + 26 (n-1) + 25\ 0^n\,} | 0 | 1 | 27 | 53 | 79 | 105 | 131 | 157 | 183 | 209 | 235 | 261 | 287 | A?????? |
28 | Icosinonagonal gnomons | Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle 1 + 27 (n-1) + 26\ 0^n\,} | 0 | 1 | 28 | 55 | 82 | 109 | 136 | 163 | 190 | 217 | 244 | 271 | 298 | A?????? |
29 | Triacontagonal gnomons | Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle 1 + 28 (n-1) + 27\ 0^n\,} | 0 | 1 | 29 | 57 | 85 | 113 | 141 | 169 | 197 | 225 | 253 | 281 | 309 | A?????? |
Polygonal gnomon numbers associated with constructible polygons (with straightedge and compass) are named in bold.
B | Name | Generating
function Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle G_{\{P^{(1)}_{B}(n)\}}(x) =\,}
|
Order
of basis[5] Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle g_{\{P^{(1)}_{B}\}} =\,}
|
Differences
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle P^{(1)}_{B}(n) - \,}
|
Partial sums
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \sum_{n=1}^m P^{(1)}_{B}(n) =\,}
|
Partial sums of reciprocals
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \sum_{n=1}^m {1\over{P^{(1)}_{B}(n)}} =\,}
|
Sum of Reciprocals[10][11]
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \sum_{n=1}^\infty{1\over{P^{(1)}_{B}(n)}} =}
|
---|---|---|---|---|---|---|---|
2 | Trigonal gnomons | Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \frac{x}{(1-x)^2}\,} | Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle 1\,} | Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle 1\,} | Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle P^{(2)}_{3}(m) =\,}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle m + 1 \binom{m}{2}\,} |
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \frac{\psi(m+\frac{1}{1})-\psi(\frac{1}{1})}{1}\,}
[8]
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \psi(m+1)+\gamma\,} [12] Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle H_{m}\,} [13] |
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \infty\,} |
3 | Tetragonal gnomons | Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \frac{x(1+x)}{(1-x)^2}\,} | Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle 2\,} | Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle 2\,} | Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle P^{(2)}_{4}(m) =\,}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle m + 2 \binom{m}{2}\,} |
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \frac{\psi(m+\frac{1}{2})-\psi(\frac{1}{2})}{2}\,}
[8]
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \frac{\psi(m+\frac{1}{2})+\gamma+2\log(2)}{2}\,} [12] Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \frac{H_{(m-\frac{1}{2})}}{2}+log(2)\,} |
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \infty\,} |
4 | Pentagonal gnomons | Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \frac{x(1+2x)}{(1-x)^2}\,} | Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle 3\,} | Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle 3\,} | Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle P^{(2)}_{5}(m) =\,}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle m + 3 \binom{m}{2}\,} |
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \frac{\psi(m+\frac{1}{3})-\psi(\frac{1}{3})}{3}\,} | Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \infty\,} |
5 | Hexagonal gnomons | Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \frac{x(1+3x)}{(1-x)^2}\,} | Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle 4\,} |
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle m + 4 \binom{m}{2}\,} |
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \frac{\psi(m+\frac{1}{4})-\psi(\frac{1}{4})}{4}\,} | Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \infty\,} | |
6 | Heptagonal gnomons | Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \frac{x(1+4x)}{(1-x)^2}\,} | Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle 5\,} | Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle 5\,} | Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle P^{(2)}_{7}(m) =\,}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle m + 5 \binom{m}{2}\,} |
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \frac{\psi(m+\frac{1}{5})-\psi(\frac{1}{5})}{5}\,} | Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \infty\,} |
7 | Octagonal gnomons | Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \frac{x(1+5x)}{(1-x)^2}\,} | Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle 6\,} | Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle P^{(2)}_{8}(m) =\,}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle m + 6 \binom{m}{2}\,} |
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \frac{\psi(m+\frac{1}{6})-\psi(\frac{1}{6})}{6}\,} | ||
8 | Nonagonal gnomons | Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \frac{x(1+6x)}{(1-x)^2}\,} | Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle P^{(2)}_{9}(m) =\,}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle m + 7 \binom{m}{2}\,} |
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \frac{\psi(m+\frac{1}{7})-\psi(\frac{1}{7})}{7}\,} | Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \infty\,} | ||
9 | Decagonal gnomons | Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \frac{x(1+7x)}{(1-x)^2}\,} | Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle 8\,} | Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle 8\,} | Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle P^{(2)}_{10}(m) =\,}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle m + 8 \binom{m}{2}\,} |
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \frac{\psi(m+\frac{1}{8})-\psi(\frac{1}{8})}{8}\,} | Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \infty\,} |
10 | Hendecagonal gnomons | Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \frac{x(1+8x)}{(1-x)^2}\,} | Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle 9\,} | Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle 9\,} | Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle P^{(2)}_{11}(m) =\,}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle m + 9 \binom{m}{2}\,} |
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \frac{\psi(m+\frac{1}{9})-\psi(\frac{1}{9})}{9}\,} | Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \infty\,} |
11 | Dodecagonal gnomons | Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \frac{x(1+9x)}{(1-x)^2}\,} | Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle 10\,} | Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle 10\,} | Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle P^{(2)}_{12}(m) =\,}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle m + 10 \binom{m}{2}\,} |
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \frac{\psi(m+\frac{1}{10})-\psi(\frac{1}{10})}{10}\,} | Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \infty\,} |
12 | Tridecagonal gnomons | Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \frac{x(1+10x)}{(1-x)^2}\,} | Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle 11\,} | Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle 11\,} | Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle P^{(2)}_{13}(m) =\,}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle m + 11 \binom{m}{2}\,} |
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \frac{\psi(m+\frac{1}{11})-\psi(\frac{1}{11})}{11}\,} | Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \infty\,} |
13 | Tetradecagonal gnomons | Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \frac{x(1+11x)}{(1-x)^2}\,} | Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle 12\,} | Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle 12\,} | Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle P^{(2)}_{14}(m) =\,}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle m + 12 \binom{m}{2}\,} |
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \frac{\psi(m+\frac{1}{12})-\psi(\frac{1}{12})}{12}\,} | Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \infty\,} |
14 | Pentadecagonal gnomons | Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \frac{x(1+12x)}{(1-x)^2}\,} | Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle 13\,} | Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle P^{(2)}_{15}(m) =\,}
|
|||
15 | Hexadecagonal gnomons | Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle 14\,} |
Failed to parse (Conversion error. Server ("https://en.wikipedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle m+14{\binom {m}{2}}\,} |
||||
16 | Heptadecagonal gnomons | Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \frac{x(1+14x)}{(1-x)^2}\,} | Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle P^{(2)}_{17}(m) =\,}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle m + 15 \binom{m}{2}\,} |
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \frac{\psi(m+\frac{1}{15})-\psi(\frac{1}{15})}{15}\,} | Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \infty\,} | ||
17 | Octadecagonal gnomons | Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \frac{x(1+15x)}{(1-x)^2}\,} | Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle 16\,} | Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle 16\,} | Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle P^{(2)}_{18}(m) =\,}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle m + 16 \binom{m}{2}\,} |
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \frac{\psi(m+\frac{1}{16})-\psi(\frac{1}{16})}{16}\,} | Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \infty\,} |
18 | Nonadecagonal gnomons | Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \frac{x(1+16x)}{(1-x)^2}\,} | Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle 17\,} | Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle 17\,} | Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle P^{(2)}_{19}(m) =\,}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle m + 17 \binom{m}{2}\,} |
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \frac{\psi(m+\frac{1}{17})-\psi(\frac{1}{17})}{17}\,} | Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \infty\,} |
19 | Icosagonal gnomons | Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \frac{x(1+17x)}{(1-x)^2}\,} | Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle 18\,} | Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle 18\,} | Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle P^{(2)}_{20}(m) =\,}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle m + 18 \binom{m}{2}\,} |
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \frac{\psi(m+\frac{1}{18})-\psi(\frac{1}{18})}{18}\,} | Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \infty\,} |
20 | Icosihenagonal gnomons | Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \frac{x(1+18x)}{(1-x)^2}\,} | Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle 19\,} | Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle 19\,} | Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle P^{(2)}_{21}(m) =\,}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle m + 19 \binom{m}{2}\,} |
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \frac{\psi(m+\frac{1}{19})-\psi(\frac{1}{19})}{19}\,} | Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \infty\,} |
21 | Icosidigonal gnomons | Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \frac{x(1+19x)}{(1-x)^2}\,} | Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle 20\,} | Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle 20\,} | Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle P^{(2)}_{22}(m) =\,}
|
||
22 | Icositrigonal gnomons |
|
|||||
23 | Icositetragonal gnomons |
|
|||||
24 | Icosipentagonal gnomons | Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle 23\,} | Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle P^{(2)}_{25}(m) =\,}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle m + 23 \binom{m}{2}\,} |
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \infty\,} | |||
25 | Icosihexagonal gnomons | Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle 24\,} | Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle 24\,} | Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle P^{(2)}_{26}(m) =\,}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle m + 24 \binom{m}{2}\,} |
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \frac{\psi(m+\frac{1}{24})-\psi(\frac{1}{24})}{24}\,} | Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \infty\,} | |
26 | Icosiheptagonal gnomons | Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \frac{x(1+24x)}{(1-x)^2}\,} | Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle 25\,} | Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle 25\,} | Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle P^{(2)}_{27}(m) =\,}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle m + 25 \binom{m}{2}\,} |
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \frac{\psi(m+\frac{1}{25})-\psi(\frac{1}{25})}{25}\,} | Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \infty\,} |
27 | Icosioctagonal gnomons | Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \frac{x(1+25x)}{(1-x)^2}\,} | Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle 26\,} | Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle 26\,} | Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle P^{(2)}_{28}(m) =\,}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle m + 26 \binom{m}{2}\,} |
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \frac{\psi(m+\frac{1}{26})-\psi(\frac{1}{26})}{26}\,} | Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \infty\,} |
28 | Icosinonagonal gnomons | Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \frac{x(1+26x)}{(1-x)^2}\,} | Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle 27\,} | Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle 27\,} | Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle P^{(2)}_{29}(m) =\,}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle m + 27 \binom{m}{2}\,} |
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \frac{\psi(m+\frac{1}{27})-\psi(\frac{1}{27})}{27}\,} | Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \infty\,} |
29 | Triacontagonal gnomons |
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle m + 28 \binom{m}{2}\,} |
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \infty\,} |
Table of sequences
B | sequences |
---|---|
2 | {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, ...} |
3 | {0, 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, ...} |
4 | {0, 1, 4, 7, 10, 13, 16, 19, 22, 25, 28, 31, 34, 37, 40, 43, 46, 49, 52, 55, 58, 61, 64, 67, 70, 73, 76, 79, 82, 85, 88, 91, 94, 97, 100, 103, 106, 109, 112, 115, 118, ...} |
5 | {0, 1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53, 57, 61, 65, 69, 73, 77, 81, 85, 89, 93, 97, 101, 105, 109, 113, 117, 121, 125, 129, 133, 137, 141, 145, 149, ...} |
6 | {0, 1, 6, 11, 16, 21, 26, 31, 36, 41, 46, 51, 56, 61, 66, 71, 76, 81, 86, 91, 96, 101, 106, 111, 116, 121, 126, 131, 136, 141, 146, 151, 156, 161, 166, 171, 176, 181, ...} |
7 | {0, 1, 7, 13, 19, 25, 31, 37, 43, 49, 55, 61, 67, 73, 79, 85, 91, 97, 103, 109, 115, 121, 127, 133, 139, 145, 151, 157, 163, 169, 175, 181, 187, 193, 199, 205, 211, ...} |
8 | {0, 1, 8, 15, 22, 29, 36, 43, 50, 57, 64, 71, 78, 85, 92, 99, 106, 113, 120, 127, 134, 141, 148, 155, 162, 169, 176, 183, 190, 197, 204, 211, 218, 225, 232, 239, 246, ...} |
9 | {0, 1, 9, 17, 25, 33, 41, 49, 57, 65, 73, 81, 89, 97, 105, 113, 121, 129, 137, 145, 153, 161, 169, 177, 185, 193, 201, 209, 217, 225, 233, 241, 249, 257, 265, 273, 281, ...} |
10 | {0, 1, 10, 19, 28, 37, 46, 55, 64, 73, 82, 91, 100, 109, 118, 127, 136, 145, 154, 163, 172, 181, 190, 199, 208, 217, 226, 235, 244, 253, 262, 271, 280, 289, 298, 307, ...} |
11 | {0, 1, 11, 21, 31, 41, 51, 61, 71, 81, 91, 101, 111, 121, 131, 141, 151, 161, 171, 181, 191, 201, 211, 221, 231, 241, 251, 261, 271, 281, 291, 301, 311, 321, 331, 341, ...} |
12 | {0, 1, 12, 23, 34, 45, 56, 67, 78, 89, 100, 111, 122, 133, 144, 155, 166, 177, 188, 199, 210, 221, 232, 243, 254, 265, 276, 287, 298, 309, 320, 331, 342, 353, 364, 375, ...} |
13 | {0, 1, 13, 25, 37, 49, 61, 73, 85, 97, 109, 121, 133, 145, 157, 169, 181, 193, 205, 217, 229, 241, 253, 265, 277, 289, 301, 313, 325, 337, 349, 361, 373, 385, 397, 409, ...} |
14 | {0, 1, 14, 27, 40, 53, 66, 79, 92, 105, 118, 131, 144, 157, 170, 183, 196, 209, 222, 235, 248, 261, 274, 287, 300, 313, 326, 339, 352, 365, 378, 391, 404, 417, 430, ...} |
15 | {0, 1, 15, 29, 43, 57, 71, 85, 99, 113, 127, 141, 155, 169, 183, 197, 211, 225, 239, 253, 267, 281, 295, 309, 323, 337, 351, 365, 379, 393, 407, 421, 435, 449, 463, ...} |
16 | {0, 1, 16, 31, 46, 61, 76, 91, 106, 121, 136, 151, 166, 181, 196, 211, 226, 241, 256, 271, 286, 301, 316, 331, 346, 361, 376, 391, 406, 421, 436, 451, 466, 481, 496, ...} |
17 | {0, 1, 17, 33, 49, 65, 81, 97, 113, 129, 145, 161, 177, 193, 209, 225, 241, 257, 273, 289, 305, 321, 337, 353, 369, 385, 401, 417, 433, 449, 465, 481, 497, 513, 529, ...} |
18 | {0, 1, 18, 35, 52, 69, 86, 103, 120, 137, 154, 171, 188, 205, 222, 239, 256, 273, 290, 307, 324, 341, 358, 375, 392, 409, 426, 443, 460, 477, 494, 511, 528, 545, 562, ...} |
19 | {0, 1, 19, 37, 55, 73, 91, 109, 127, 145, 163, 181, 199, 217, 235, 253, 271, 289, 307, 325, 343, 361, 379, 397, 415, 433, 451, 469, 487, 505, 523, 541, 559, 577, 595, ...} |
20 | {0, 1, 20, 39, 58, 77, 96, 115, 134, 153, 172, 191, 210, 229, 248, 267, 286, 305, 324, 343, 362, 381, 400, 419, 438, 457, 476, 495, 514, 533, 552, 571, 590, 609, 628, ...} |
21 | {0, 1, 21, 41, 61, 81, 101, 121, 141, 161, 181, 201, 221, 241, 261, 281, 301, 321, 341, 361, 381, 401, 421, 441, 461, 481, 501, 521, 541, 561, 581, 601, 621, 641, 661, ...} |
22 | {0, 1, 22, 43, 64, 85, 106, 127, 148, 169, 190, 211, 232, 253, 274, 295, 316, 337, 358, 379, 400, 421, 442, 463, 484, 505, 526, 547, 568, 589, 610, 631, 652, 673, 694, ...} |
23 | {0, 1, 23, 45, 67, 89, 111, 133, 155, 177, 199, 221, 243, 265, 287, 309, 331, 353, 375, 397, 419, 441, 463, 485, 507, 529, 551, 573, 595, 617, 639, 661, 683, 705, 727, ...} |
24 | {0, 1, 24, 47, 70, 93, 116, 139, 162, 185, 208, 231, 254, 277, 300, 323, 346, 369, 392, 415, 438, 461, 484, 507, 530, 553, 576, 599, 622, 645, 668, 691, 714, 737, 760, ...} |
25 | {0, 1, 25, 49, 73, 97, 121, 145, 169, 193, 217, 241, 265, 289, 313, 337, 361, 385, 409, 433, 457, 481, 505, 529, 553, 577, 601, 625, 649, 673, 697, 721, 745, 769, 793, ...} |
26 | {0, 1, 26, 51, 76, 101, 126, 151, 176, 201, 226, 251, 276, 301, 326, 351, 376, 401, 426, 451, 476, 501, 526, 551, 576, 601, 626, 651, 676, 701, 726, 751, 776, 801, 826, ...} |
27 | {0, 1, 27, 53, 79, 105, 131, 157, 183, 209, 235, 261, 287, 313, 339, 365, 391, 417, 443, 469, 495, 521, 547, 573, 599, 625, 651, 677, 703, 729, 755, 781, 807, 833, 859, ...} |
28 | {0, 1, 28, 55, 82, 109, 136, 163, 190, 217, 244, 271, 298, 325, 352, 379, 406, 433, 460, 487, 514, 541, 568, 595, 622, 649, 676, 703, 730, 757, 784, 811, 838, 865, 892, ...} |
29 | {0, 1, 29, 57, 85, 113, 141, 169, 197, 225, 253, 281, 309, 337, 365, 393, 421, 449, 477, 505, 533, 561, 589, 617, 645, 673, 701, 729, 757, 785, 813, 841, 869, 897, 925, ...} |
See also
Notes
- ↑ An odd number; one of the terms of an arithmetical series by which polygonal numbers are found. Also called gnomonic number. gnomonic (no-mon'ik), a. ..., The Century dictionary: an encyclopedic lexicon of the English ... - Google Books Result, William Dwight Whitney - 1889 - Reference.
- ↑ Weisstein, Eric W., Gnomonic Number, From MathWorld--A Wolfram Web Resource.
- ↑ Where Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \scriptstyle P^{(d)}_{N_0}(n)\,} is the d-dimensional regular convex polytope number with N0 0-dimensional facets, i.e. vertices V, or B = b+1 (instead of the 2 vertices) for 1-dimensional regular polytope numbers.
- ↑ Weisstein, Eric W., Polyhedral Formula, From MathWorld--A Wolfram Web Resource.
- ↑ 5.0 5.1 5.2 Weisstein, Eric W., Lagrange's Four-Square Theorem, From MathWorld--A Wolfram Web Resource. Cite error: Invalid
<ref>
tag; name "FermatsPolygonalNumberTheorem" defined multiple times with different content - ↑ Weisstein, Eric W., Waring's Problem, From MathWorld--A Wolfram Web Resource.
- ↑ Weisstein, Eric W., Fifteen Theorem, From MathWorld--A Wolfram Web Resource.
- ↑ 8.0 8.1 8.2 8.3 Weisstein, Eric W., Digamma Function, From MathWorld--A Wolfram Web Resource.
- ↑ Weisstein, Eric W., Polygamma Function, From MathWorld--A Wolfram Web Resource.
- ↑ Downey, Lawrence M., Ong, Boon W., and Sellers, James A., Beyond the Basel Problem: Sums of Reciprocals of Figurate Numbers, 2008.
- ↑ PSYCHEDELIC GEOMETRY, INVERSE POLYGONAL NUMBERS SERIES.
- ↑ 12.0 12.1 Weisstein, Eric W., Euler-Mascheroni Constant, From MathWorld--A Wolfram Web Resource.
- ↑ Sondow, Jonathan and Weisstein, Eric W., Harmonic Number, From MathWorld--A Wolfram Web Resource.
External links
- S. Plouffe, Approximations de Séries Génératrices et Quelques Conjectures, Dissertation, Université du Québec à Montréal, 1992.
- S. Plouffe, 1031 Generating Functions and Conjectures, Université du Québec à Montréal, 1992.
- Herbert S. Wilf, generatingfunctionology, 2nd ed., 1994.