Code {{sym|...}} (see 3 rd column)
|
{{sym|...|hex}}, &#x{{sym|...|hex}};
|
Styled HTML+CSS {{sym|...}} in {{math|...|&&}}, {{math|...|&}}
|
Code {{sym|...|tex}}
|
Result (TeX)
|
Rendered TeX {{sym|...|tex}} in {{math|...|$$}}, {{math|...|$}}
|
Code {{sym|...|name}}
|
Name
|
Logic
|
{{sym|def}} |
2254, ≔
|
,
|
{{sym|def|tex}}
|
:=
|
,
|
{{sym|def|name}} |
[LHS term] is defined as [RHS]
|
{{sym|coleq}} |
2254, ≔
|
,
|
{{sym|coleq|tex}}
|
:=
|
,
|
{{sym|coleq|name}} |
[LHS term] is defined as [RHS]
|
{{sym|defines}} |
2255, ≕
|
,
|
{{sym|defines|tex}}
|
=:
|
,
|
{{sym|defines|name}} |
[LHS] defines [RHS term]
|
{{sym|eqcol}} |
2255, ≕
|
,
|
{{sym|eqcol|tex}}
|
=:
|
,
|
{{sym|eqcol|name}} |
[LHS] defines [RHS term]
|
{{sym|not}} |
00AC, ¬
|
,
|
{{sym|not|tex}} |
{\lnot} |
,
|
{{sym|not|name}} |
logical not
|
{{sym|and}} |
2227, ∧
|
,
|
{{sym|and|tex}} |
{\land} |
,
|
{{sym|and|name}} |
logical and
|
{{sym|And}} |
22C0, ⋀
|
,
|
{{sym|And|tex}} |
\bigwedge |
,
|
{{sym|And|name}} |
n-ary logical and
|
{{sym|nand}} |
2191, ↑
|
,
|
{{sym|nand|tex}} |
{\uparrow} |
,
|
{{sym|nand|name}} |
logical nand
|
{{sym|or}} |
2228, ∨
|
,
|
{{sym|or|tex}} |
{\lor} |
,
|
{{sym|or|name}} |
logical or
|
{{sym|Or}} |
22C1, ⋁
|
,
|
{{sym|Or|tex}} |
\bigvee |
,
|
{{sym|Or|name}} |
n-ary logical or
|
{{sym|nor}} |
2193, ↓
|
,
|
{{sym|nor|tex}} |
{\downarrow} |
,
|
{{sym|nor|name}} |
logical nor
|
{{sym|xor}} |
2295, ⊕
|
,
|
{{sym|xor|tex}} |
{\oplus} |
,
|
{{sym|xor|name}} |
logical xor
|
{{sym|imp}} |
2192, →
|
,
|
{{sym|imp|tex}} |
{\rightarrow} |
,
|
{{sym|imp|name}} |
implies
|
{{sym|Imp}} |
27F9, ⟹
|
,
|
{{sym|Imp|tex}} |
{\Rightarrow} |
,
|
{{sym|Imp|name}} |
implies
|
{{sym|imp by}} |
2190, ←
|
,
|
{{sym|imp by|tex}} |
{\leftarrow} |
,
|
{{sym|imp by|name}} |
is implied by
|
{{sym|Imp by}} |
27F8, ⟸
|
,
|
{{sym|Imp by|tex}} |
{\Leftarrow} |
,
|
{{sym|Imp by|name}} |
is implied by
|
{{sym|iff}} |
2194, ↔
|
,
|
{{sym|iff|tex}} |
{\leftrightarrow} |
,
|
{{sym|iff|name}} |
if and only if
|
{{sym|Iff}} |
27FA, ⟺
|
,
|
{{sym|Iff|tex}} |
{\Leftrightarrow} |
,
|
{{sym|Iff|name}} |
if and only if
|
{{sym|exist}} |
2203, ∃
|
,
|
{{sym|exist|tex}} |
{\exists} |
,
|
{{sym|exist|name}} |
there exists
|
{{sym|exists}} |
2203, ∃
|
,
|
{{sym|exists|tex}} |
{\exists} |
,
|
{{sym|exists|name}} |
there exists
|
{{sym|uexist}} |
2203, ∃
|
,
|
{{sym|uexist|tex}} |
{\exists!} |
,
|
{{sym|uexist|name}} |
there exists exactly one
|
{{sym|uexists}} |
2203, ∃
|
,
|
{{sym|uexists|tex}} |
{\exists!} |
,
|
{{sym|uexists|name}} |
there exists exactly one
|
{{sym|nexist}} |
2204, ∄
|
,
|
{{sym|nexist|tex}} |
{\nexists} |
,
|
{{sym|nexist|name}} |
there does not exist
|
{{sym|nexists}} |
2204, ∄
|
,
|
{{sym|nexists|tex}} |
{\nexists} |
,
|
{{sym|nexists|name}} |
there does not exist
|
{{sym|forall}} |
2200, ∀
|
,
|
{{sym|forall|tex}} |
{\forall} |
,
|
{{sym|forall|name}} |
for all
|
{{sym|because}} |
2235, ∵
|
,
|
{{sym|because|tex}} |
{\because} |
,
|
{{sym|because|name}} |
because
|
{{sym|there4}} |
2234, ∴
|
,
|
{{sym|there4|tex}} |
{\therefore} |
,
|
{{sym|there4|name}} |
therefore
|
{{sym|therefore}} |
2234, ∴
|
,
|
{{sym|therefore|tex}} |
{\therefore} |
,
|
{{sym|therefore|name}} |
therefore
|
{{sym|taut}} |
22A4, ⊤
|
,
|
{{sym|taut|tex}} |
{\top} |
,
|
{{sym|taut|name}} |
tautology
|
{{sym|top}} |
22A4, ⊤
|
,
|
{{sym|top|tex}} |
{\top} |
,
|
{{sym|top|name}} |
tautology
|
{{sym|cont}} |
22A5, ⊥
|
,
|
{{sym|cont|tex}} |
{\bot} |
,
|
{{sym|cont|name}} |
contradiction
|
{{sym|bot}} |
22A5, ⊥
|
,
|
{{sym|bot|tex}} |
{\bot} |
,
|
{{sym|bot|name}} |
contradiction
|
{{sym|QED}} |
220E, ∎
|
,
|
{{sym|QED|tex}} |
{\blacksquare} |
,
|
{{sym|QED|name}} |
end of proof (solid square)
|
{{sym|hollow QED}} |
25A1, □
|
,
|
{{sym|hollow QED|tex}} |
{\square} |
,
|
{{sym|hollow QED|name}} |
end of proof (hollow square)
|