This site is supported by donations to The OEIS Foundation.
Template:Distinct nontrivial prime factors/doc
From OeisWiki
The {{distinct nontrivial prime factors}} (or {{dpf lt n}}) arithmetic function template returns a list of distinct nontrivial prime factors of a nonzero integer, otherwise returns an error message.
Usage
- {{distinct nontrivial prime factors|a nonzero integer|sep = list items separator (default ,)}}
or
- {{distinct nontrivial prime factors|a nonzero integer|list items separator (default ,)}}
or
- {{dpf lt n|a nonzero integer|sep = list items separator (default ,)}}
or
- {{dpf lt n|a nonzero integer|list items separator (default ,)}}
Examples
Examples with valid input
code result {{dpf lt n|-28}} 2, TO BE COMPLETED! {{dpf lt n|-5}} {{dpf lt n|1}} {{dpf lt n|7}} {{dpf lt n|15}} 3, TO BE COMPLETED! {{dpf lt n|27}} 3, TO BE COMPLETED! {{dpf lt n|30}} 2,3,5, TO BE COMPLETED! {{dpf lt n|111}} 3, TO BE COMPLETED! {{dpf lt n|89*113}} 89, TO BE COMPLETED! {{dpf lt n|5*7*13*29}} 5,7,13,29, TO BE COMPLETED! {{dpf lt n|5*7*13*29|;}} 5;7;13;29; TO BE COMPLETED! {{dpf lt n|5*7*13*29|sep = , }} 5, 7, 13, 29, TO BE COMPLETED!
Examples with invalid input
code result {{dpf lt n|0}} Distinct nontrivial prime factors error: Argument must be a nonzero integer {{dpf lt n|131^2}} Distinct nontrivial prime factors error: Argument must be a nonzero integer with absolute value < 131 2 = 17161
Formatted numbers
This template requires unformatted numbers, it will not recognize formatted numbers, e.g. comma separated, which is by design since formatted numbers will break expression parsers. To remove the formatting from a number, you can wrap the number first in {{formatnum:number|R}}.[1]
code result {{distinct nontrivial prime factors|1,000}} Distinct nontrivial prime factors error: Argument must be a nonzero integer {{distinct nontrivial prime factors|{{formatnum:1,000|R}}}} 2,5, TO BE COMPLETED!
Code
See also
- {{distinct prime factors up to sqrt(n)}} or {{dpf le sqrt(n)}}
- {{distinct nontrivial prime factors}} or {{dpf lt n}}
- {{distinct prime factors}} or {{dpf}}
- {{number of distinct prime factors}} or {{little omega}}
- {{sum of distinct prime factors}} or {{sodpf}}
- {{product of distinct prime factors}} or {{squarefree kernel}} or {{radical}} or {{rad}}
- {{multiplicity}}
- {{prime factors (with multiplicity) up to sqrt(n)}} or {{mpf le sqrt(n)}}
- {{nontrivial prime factors (with multiplicity)}} or {{mpf lt n}}
- {{prime factors (with multiplicity)}} or {{mpf}} or {{factorization}}
- {{number of prime factors (with multiplicity)}} or {{big Omega}}
- {{sum of prime factors (with multiplicity)}} or {{sopfr}} or {{integer log}}
- {{product of prime factors (with multiplicity)}} (must give back {{abs|n}}, the absolute value of
)n
- {{quadratfrei}}
- {{Moebius mu}} or {{mu}}
- {{Euler phi}} or {{totient}}
- {{Dedekind psi}}
- {{number of divisors}} or {{sigma 0}} or {{tau}}
- {{sum of divisors}} or {{sigma 1}} or {{sigma}} (Cf. {{divisor function}} or {{sigma k}}, with
(default value))k = 1 - {{divisor function}} or {{sigma k}} (for
)k ≠ 0
External links
- Andrew Hodges, Java Applet for Factorization
- http://factordb.com/