There are no approved revisions of this page, so it may
not have been
reviewed.
This article page is a stub, please help by expanding it.
Integers
are
sociable numbers (a
-tuple of sociable numbers of order
) if
-
s (ni ) := σ (ni ) − ni = n(i + 1 mod k ) , i = 0 .. k − 1, k ≥ 3, |
where
is the
sum of aliquot divisors of
and
is the
sum of divisors of
.
One might say that a sociable
-tuple of numbers is mutually perfect (so to speak) since
-
The sociable
-tuples (
) are
-
{(12496, 14288, 15472, 14536, 14264, 12496), (14316, 19116, 31704, 47616, 83328, 177792, 295488, 629072, 589786, 294896, 358336, 418904, 366556, 274924, 275444, 243760, 376736, 381028, 285778, 152990, 122410, 97946, 48976, 45946, 22976, 22744, 19916, 17716, 14316), (1264460, 1547860, 1727636, 1305184, 1264460), ...}
Amicable numbers ([not really] sociable numbers of order
2) correspond to
, while
perfect numbers ([really not] sociable numbers of order
1) correspond to
.
There are no known sociable numbers of order 3 (do they exist?).
Example
- {{#expr: {{divisor function|12496}} - 12496 }} = 14288,
- {{#expr: {{divisor function|14288}} - 14288 }} = 15472,
- {{#expr: {{divisor function|15472}} - 15472 }} = 14536,
- {{#expr: {{divisor function|14536}} - 14536 }} = 14264,
- {{#expr: {{divisor function|14264}} - 14264 }} = 12496,
- {{#expr: {{divisor function|12496}} - 12496 }} = 14288.
Sequences
A003416 Sociable numbers: smallest member of each cycle.
-
{12496, 14316, 1264460, 2115324, 2784580, 4938136, 7169104, 18048976, 18656380, 28158165, 46722700, 81128632, 174277820, 209524210, 330003580, 498215416, 805984760, 1095447416, 1236402232, 1276254780, 1799281330, ...}
A072891 The 5-cycle of the
process starting at
12496, where
is the sum of divisors of
(
A000203).
-
{12496, 14288, 15472, 14536, 14264, 12496}
A072890 The 28-cycle of the
process starting at
14316, where
is the sum of divisors of
(
A000203).
-
{14316, 19116, 31704, 47616, 83328, 177792, 295488, 629072, 589786, 294896, 358336, 418904, 366556, 274924, 275444, 243760, 376736, 381028, 285778, 152990, 122410, 97946, 48976, 45946, 22976, 22744, 19916, 17716, 14316}
A072892 The 4-cycle of the
process starting at
1264460, where
is the sum of divisors of
. (
A000203).
-
{1264460, 1547860, 1727636, 1305184, 1264460}
A?????? The 4-cycle of the
process starting at
28158165, where
is the sum of divisors of
. (
A000203).
-
{28158165, 29902635, 30853845, 29971755, 28158165}
A090615 Smallest member of sociable quadruples.
-
{1264460, 2115324, 2784580, 4938136, 7169104, 18048976, 18656380, 28158165, 46722700, 81128632, 174277820, 209524210, 330003580, 498215416, 1236402232, 1799281330, 2387776550, 2717495235, 2879697304, 3705771825, 4424606020, ...}
A?????? Smallest member of sociable quintuples.
-
{12496, ...}
A?????? Smallest member of sociable 28-tuples.
-
{14316, ...}
See also
External links