This site is supported by donations to The OEIS Foundation.

Sierpiński's triangle

From OeisWiki
Jump to: navigation, search


This article needs more work.

Please help by expanding it!


Sierpiński’s triangle, named after Wacław Sierpiński, is Pascal’s triangle modulo 2.

Sierpiński’s triangle (Pascal’s triangle mod 2)
n
[row (n)]2  =  [  
n
i  = 0
  
((
n
i
) mod 2) 2i  ]2  =  [  
⌊  log2 n ⌋
i  = 0
  
Fi  ( 
⌊  n  / 2i
mod 2)
]2  = 
[  
⌊  log2 n ⌋
i  = 0
  
(2 2i + 1) ( 
⌊  n  / 2i
mod 2)
]2

A006943 Rows of Sierpiński’s triangle (Pascal’s triangle mod 2).
A047999 Concatenated rows of Sierpiński’s triangle (Pascal’s triangle mod 2).
[row (n)]10


(A001317)
0 1 1
1 1 1 3
2 1 0 1 5
3 1 1 1 1 15
4 1 0 0 0 1 17
5 1 1 0 0 1 1 51
6 1 0 1 0 1 0 1 85
7 1 1 1 1 1 1 1 1 255
8 1 0 0 0 0 0 0 0 1 257
9 1 1 0 0 0 0 0 0 1 1 771
10 1 0 1 0 0 0 0 0 1 0 1 1285
11 1 1 1 1 0 0 0 0 1 1 1 1 3855
12 1 0 0 0 1 0 0 0 1 0 0 0 1 4369
13 1 1 0 0 1 1 0 0 1 1 0 0 1 1 13107
14 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 21845
15 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 65535
16 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 65537
17 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 196611
18 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 327685
19 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 983055
20 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1114129
21 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 3342387
22 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 5570645
23 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 16711935
24 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 16843009
25 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 50529027
26 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 84215045
27 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 252645135
28 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 286331153
29 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 858993459
30 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1431655765
31 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 4294967295
32 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 4294967297
i  = 0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Sierpiński’s triangle rows

Sierpiński’s triangle rows
n
[row(n)]2
[row(n)]10
Factorization into Fermat numbers
0 1 1
1 11 3 (11)2 = 3 = F0
2 101 5 (101)2 = 5 = F1
3 1111 15 (11)2 ⋅ (101)2 = 3 ⋅ 5 = F0 F1
4 10001 17 (10001)2 = 17 = F2
5 110011 51 (11)2 ⋅ (10001)2 = 3 ⋅ 17 = F0 F2
6 1010101 85 (101)2 ⋅ (10001)2 = 5 ⋅ 17 = F1 F2
7 11111111 255 (11)2 ⋅ (101)2 ⋅ (10001)2 = 3 ⋅ 5 ⋅ 17 = F0 F1 F2
8 100000001 257 (100000001)2 = 257 = F3
9 1100000011 771 (11)2 ⋅ (100000001)2 = 3 ⋅ 257 = F0 F3
10 10100000101 1285 (101)2 ⋅ (100000001)2 = 5 ⋅ 257 = F1 F3
11 111100001111 3855 (11)2 ⋅ (101)2 ⋅ (100000001)2 = 3 ⋅ 5 ⋅ 257 = F0 F1 F3
12 1000100010001 4369 (10001)2 ⋅ (100000001)2 = 17 ⋅ 257 = F2 F3
13 11001100110011 13107 (11)2 ⋅ (10001)2 ⋅ (100000001)2 = 3 ⋅ 17 ⋅ 257 = F0 F2 F3
14 101010101010101 21845 (101)2 ⋅ (10001)2 ⋅ (100000001)2 = 5 ⋅ 17 ⋅ 257 = F1 F2 F3
15 1111111111111111 65535 (11)2 ⋅ (101)2 ⋅ (10001)2 ⋅ (100000001)2 = 3 ⋅ 5 ⋅ 17 ⋅ 257 = F0 F1 F2 F3
16 10000000000000001 65537 (10000000000000001)2 = 65537 = F4
17 110000000000000011 196611 (11)2 ⋅ (10000000000000001)2 = 3 ⋅ 65537 = F0 F4
18 1010000000000000101 327685 (101)2 ⋅ (10000000000000001)2 = 5 ⋅ 65537 = F1 F4
19 11110000000000001111 983055 (11)2 ⋅ (101)2 ⋅ (10000000000000001)2 = 3 ⋅ 5 ⋅ 65537 = F0 F1 F4
20 100010000000000010001 1114129 (10001)2 ⋅ (10000000000000001)2 = 17 ⋅ 65537 = F2 F4
21 1100110000000000110011 3342387 (11)2 ⋅ (10001)2 ⋅ (10000000000000001)2 = 3 ⋅ 17 ⋅ 65537 = F0 F2 F4
22 10101010000000001010101 5570645 (101)2 ⋅ (10001)2 ⋅ (10000000000000001)2 = 5 ⋅ 17 ⋅ 65537 = F1 F2 F4
23 111111110000000011111111 16711935 (11)2 ⋅ (101)2 ⋅ (10001)2 ⋅ (10000000000000001)2 = 3 ⋅ 5 ⋅ 17 ⋅ 65537 = F0 F1 F2 F4
24 1000000010000000100000001 16843009 (100000001)2 = (10000000000000001)2 = 257 ⋅ 65537 = F3 F4
25 11000000110000001100000011 50529027 (11)2 ⋅ (100000001)2 = (10000000000000001)2 = 3 ⋅ 257 ⋅ 65537 = F0 F3 F4
26 101000001010000010100000101 84215045 (101)2 ⋅ (100000001)2 = (10000000000000001)2 = 5 ⋅ 257 ⋅ 65537 = F1 F3 F4
27 1111000011110000111100001111 252645135 (11)2 ⋅ (101)2 ⋅ (100000001)2 = (10000000000000001)2 = 3 ⋅ 5 ⋅ 257 ⋅ 65537 = F0 F1 F3 F4
28 10001000100010001000100010001 286331153 (10001)2 ⋅ (100000001)2 = (10000000000000001)2 = 17 ⋅ 257 ⋅ 65537 = F2 F3 F4
29 110011001100110011001100110011 858993459 (11)2 ⋅ (10001)2 ⋅ (100000001)2 = (10000000000000001)2 = 3 ⋅ 17 ⋅ 257 ⋅ 65537 = F0 F2 F3 F4
30 1010101010101010101010101010101 1431655765 (101)2 ⋅ (10001)2 ⋅ (100000001)2 = (10000000000000001)2 = 5 ⋅ 17 ⋅ 257 ⋅ 65537 = F1 F2 F3 F4
31 11111111111111111111111111111111 4294967295 (11)2 ⋅ (101)2 ⋅ (10001)2 ⋅ (100000001)2 = (10000000000000001)2 = 3 ⋅ 5 ⋅ 17 ⋅ 257 ⋅ 65537 = F0 F1 F2 F3 F4
32 100000000000000000000000000000001 4294967297* (100000000000000000000000000000001)2 = 4294967297* = F5
* F5 = 4294967297 = 641 ⋅ 6700417 is the first composite Fermat number. From here on no other Fermat number is known to be prime.

Sierpiński’s triangle rows and constructible (with straightedge and compass) odd-sided polygons

For
n = 1
to 31, we get all the non-empty products of the 5 known Fermat primes, giving the number of sides of constructible odd-sided polygons. If there are no other Fermat primes, there are then no more constructible (with straightedge and compass) odd-sided polygons.

Rows formulae

It can be proved by induction that the rows of Sierpiński’s triangle interpreted as a binary number are products of distinct Fermat numbers (Denton Hewgill’s identity[1])

     
[row (n)]2  =  [  
n
i  = 0
  
((
n
i
) mod 2) 2i  ]2  =  [  
⌊  log2 n ⌋
i  = 0
  
Fi   ( 
⌊  n  / 2i
mod 2)
]2  = 
[  
⌊  log2 n ⌋
i  = 0
  
(2 2i + 1) ( 
⌊  n  / 2i
mod 2)
]2 .

Inductive proof:

  • Base case: For row 0, we get 1 (empty product), the product of distinct Fermat numbers in { };
  • Inductive hypothesis: Assume that any row
    n, 0   ≤   n   ≤   2k  −  1,
    is the product of distinct Fermat numbers in
    {F0 , ..., Fk   − 1}

     
[row (n)]2  =  [  
⌊  log2 n ⌋
i  = 0
  
Fi   ( 
⌊  n  / 2i
mod 2)
]2  =  [  
⌊  log2 n ⌋
i  = 0
  
(2 2i + 1) ( 
⌊  n  / 2i
mod 2)
]2 ,

then for any row
2k + n, 0   ≤   n   ≤   2k  −  1,
we have
     
[row (2k + n)]2  =  [row (n)]2 [ Fk  ]2  =  [  
⌊  log2 n ⌋
i  = 0
  
Fi   ( 
⌊  n  / 2i
mod 2)
]2 [ Fk  ]2  = 
[  
k
i  = 0
  
Fi   ( 
⌊  n  / 2i
mod 2)
]2  =  [  
⌊  log2 ( 2k + n) ⌋
i  = 0
  
Fi   ( 
⌊  n  / 2i
mod 2)
]2 .

As a particular case, rows
2n, n   ≥   0,
give
Fn
, the
n
th Fermat number.

Sequences

A006943 Sierpiński’s triangle (Pascal’s triangle mod 2) rows.

{1, 11, 101, 1111, 10001, 110011, 1010101, 11111111, 100000001, 1100000011, 10100000101, 111100001111, 1000100010001, 11001100110011, 101010101010101, 1111111111111111, 10000000000000001, 110000000000000011, 1010000000000000101, ...}

A047999 Sierpiński’s triangle (or Sierpiński’s gasket): triangle, read by rows, formed by reading Pascal’s triangle mod 2.

{1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, ...}
A001317 Sierpiński’s triangle (Pascal’s triangle mod 2) rows converted to decimal. (
n   ≥   0.
)
{1, 3, 5, 15, 17, 51, 85, 255, 257, 771, 1285, 3855, 4369, 13107, 21845, 65535, 65537, 196611, 327685, 983055, 1114129, 3342387, 5570645, 16711935, 16843009, 50529027, ...}

See also

Notes

External links