There are no approved revisions of this page, so it may
not have been
reviewed.
This article page is a stub, please help by expanding it.
An th complex root (root of degree ) is one of the complex solutions of
Real roots
An th real root (root of degree ) is one of the real solutions of
If is an even positive integer, then the two real roots are
while if is an odd positive integer, then the single real root is
where is the root index and a is the radicand.
Surds
A surd is an algebraic irrational root, e.g. is a cubic surd. The quadratic surd is a mixed surd (i.e. a rational number multiplied by a surd).
See also
Hierarchical list of operations pertaining to numbers [1] [2]
0th iteration
1st iteration
- Addition:
S(S(⋯ "a times" ⋯ (S(n)))) |
, the sum , where is the augend and is the addend. (When addition is commutative both are simply called terms.)
- Subtraction:
P(P(⋯ "s times" ⋯ (P(n)))) |
, the difference , where is the minuend and is the subtrahend.
2nd iteration
- Multiplication:
n + (n + (⋯ "k times" ⋯ (n + (n)))) |
, the product , where is the multiplicand and is the multiplier.[3] (When multiplication is commutative both are simply called factors.)
- Division: the ratio , where is the dividend and is the divisor.
3rd iteration
- Exponentiation ( as "degree", as "base", as "variable").
- Powers:
n ⋅ (n ⋅ (⋯ "d times" ⋯ (n ⋅ (n)))) |
, written .
- Exponentials:
b ⋅ (b ⋅ (⋯ "n times" ⋯ (b ⋅ (b)))) |
, written .
- Exponentiation inverses ( as "degree", as "base", as "variable").
4th iteration
- Tetration ( as "degree", as "base", as "variable").
- Tetration inverses ( as "degree", as "base", as "variable").
5th iteration
- Pentation ( as "degree", as "base", as "variable").
- Pentation inverses
6th iteration
- Hexation ( as "degree", as "base", as "variable").
- Hexation inverses
7th iteration
- Heptation ( as "degree", as "base", as "variable").
- Heptation inverses
8th iteration
- Octation ( as "degree", as "base", as "variable").
- Octa-powers:
n ^^^^^ (n ^^^^^ (⋯ "d times" ⋯ (n ^^^^^ (n)))) |
, written .
- Octa-exponentials:
b ^^^^^ (b ^^^^^ (⋯ "n times" ⋯ (b ^^^^^ (b)))) |
, written .
- Octation inverses
Notes
Notes