
There are no approved revisions of this page, so it may
not have been
reviewed.
This article page is a stub, please help by expanding it.
This article needs more work.
Please help by expanding it!
Since we have (it is easily proved by [mathematical] induction)[1]
-

where
-

is the
th primorial number and
is the
th prime, and where
gives the empty product (defined as 1), this provides a unique representation for each natural number, with the restriction (0 to
) on the "digits" used with the place-value
. This gives the primorial numeral system, also called primoradic, a mixed radix numeral system.
Primorial numeral system (successive prime numbers as radix, whose place values are primorial numbers)
index:
|
7 |
6 |
5 |
4
|
3 |
2 |
1 |
0
|
radix:
|
17 |
13 |
11 |
7
|
5 |
3 |
2 |
1
|
place value:
|
17# = 510510 |
13# = 30030 |
11# = 2310 |
7# = 210
|
5# = 30 |
3# = 6 |
2# = 2 |
= 1
|
digit:
|
0 to 18 |
0 to 16 |
0 to 12 |
0 to 10
|
0 to 6 |
0 to 4 |
0 to 2 |
0 to 1
|
A049345 Integers written in primorial base. (Above 10*7# - 1, we need to use "digits" separators, e.g. colons.)
- {0, 1, 10, 11, 20, 21, 100, 101, 110, 111, 120, 121, 200, 201, 210, 211, 220, 221, 300, 301, 310, 311, 320, 321, 400, 401, 410, 411, 420, 421, 1000, 1001, 1010, 1011, 1020, ...}
The concatenation of
- {{0}, {1}, {1, 0}, {1, 1}, {2, 0}, {2, 1}, {1, 0, 0}, {1, 0, 1}, {1, 1, 0}, {1, 1, 1}, {1, 2, 0}, {1, 2, 1}, {2, 0, 0}, {2, 0, 1}, {2, 1, 0}, {2, 1, 1}, {2, 2, 0}, {2, 2, 1}, ...}
where we have
, rows (zero-indexed from
to
) with
elements gives the following sequence. (If we applied the rule of not displaying the leading 0 to zero, we would have nothing to show for it: there would be no row for
.)
A235168 Triangle read by rows: row n gives digits of n in primorial base.
- {0, 1, 1, 0, 1, 1, 2, 0, 2, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 2, 0, 1, 2, 1, 2, 0, 0, 2, 0, 1, 2, 1, 0, 2, 1, 1, 2, 2, 0, 2, 2, 1, 3, 0, 0, 3, 0, 1, 3, 1, 0, 3, 1, 1, ...}
Table of primoradics
In the following table, the primes, except for {2, 3, 5}, all congruent to {1, 7, 11, 13, 17, 19, 23, 29} (mod 30), are shown in bold italic.
In primoradic representation, except for {1:0#, 1:1#, 2:1#}, all primes end with
- 0:0:1#, 1:0:1#, 1:2:1#, 2:0:1#, 2:2:1#, 3:0:1#, 3:2:1#, 4:2:1#
where the primes congruent to 1 (mod 6) end with
- 0:0:1#, 1:0:1#, 2:0:1#, 3:0:1#,
while the primes congruent to 5 (mod 6) end with
- 1:2:1#, 2:2:1#, 3:2:1#, 4:2:1#.
Among the
numbers coprime to 210 (as given by the totient function), 1 is a unit and the following five numbers
- 11^2 = 121, 11*13 = 143, 11*17 = 187, 11*19 = 209,
- 13^2 = 169,
are composite, so we have 42 primes which are coprime to 210. If we count the primes {2, 3, 5, 7} we get
primes up to 210 (as given by the prime counting function).
Note that starting from 10 * 7# = 210010 = 10:0:0:0:0#, the need to use colon separators becomes obvious!
Primoradic representation of nonnegative integers from 0 to 7# − 1
n10 |
n#
|
0 |
0
|
1 |
1
|
2 |
1:0
|
3 |
1:1
|
4 |
2:0
|
5 |
2:1
|
6 |
1:0:0
|
7 |
1:0:1
|
8 |
1:1:0
|
9 |
1:1:1
|
10 |
1:2:0
|
11 |
1:2:1
|
12 |
2:0:0
|
13 |
2:0:1
|
14 |
2:1:0
|
15 |
2:1:1
|
16 |
2:2:0
|
17 |
2:2:1
|
18 |
3:0:0
|
19 |
3:0:1
|
20 |
3:1:0
|
21 |
3:1:1
|
22 |
3:2:0
|
23 |
3:2:1
|
24 |
4:0:0
|
25 |
4:0:1
|
26 |
4:1:0
|
27 |
4:1:1
|
28 |
4:2:0
|
29 |
4:2:1
|
|
n10 |
n#
|
30 |
1:0:0:0
|
31 |
1:0:0:1
|
32 |
1:0:1:0
|
33 |
1:0:1:1
|
34 |
1:0:2:0
|
35 |
1:0:2:1
|
36 |
1:1:0:0
|
37 |
1:1:0:1
|
38 |
1:1:1:0
|
39 |
1:1:1:1
|
40 |
1:1:2:0
|
41 |
1:1:2:1
|
42 |
1:2:0:0
|
43 |
1:2:0:1
|
44 |
1:2:1:0
|
45 |
1:2:1:1
|
46 |
1:2:2:0
|
47 |
1:2:2:1
|
48 |
1:3:0:0
|
49 |
1:3:0:1
|
50 |
1:3:1:0
|
51 |
1:3:1:1
|
52 |
1:3:2:0
|
53 |
1:3:2:1
|
54 |
1:4:0:0
|
55 |
1:4:0:1
|
56 |
1:4:1:0
|
57 |
1:4:1:1
|
58 |
1:4:2:0
|
59 |
1:4:2:1
|
|
n10 |
n#
|
60 |
2:0:0:0
|
61 |
2:0:0:1
|
62 |
2:0:1:0
|
63 |
2:0:1:1
|
64 |
2:0:2:0
|
65 |
2:0:2:1
|
66 |
2:1:0:0
|
67 |
2:1:0:1
|
68 |
2:1:1:0
|
69 |
2:1:1:1
|
70 |
2:1:2:0
|
71 |
2:1:2:1
|
72 |
2:2:0:0
|
73 |
2:2:0:1
|
74 |
2:2:1:0
|
75 |
2:2:1:1
|
76 |
2:2:2:0
|
77 |
2:2:2:1
|
78 |
2:3:0:0
|
79 |
2:3:0:1
|
80 |
2:3:1:0
|
81 |
2:3:1:1
|
82 |
2:3:2:0
|
83 |
2:3:2:1
|
84 |
2:4:0:0
|
85 |
2:4:0:1
|
86 |
2:4:1:0
|
87 |
2:4:1:1
|
88 |
2:4:2:0
|
89 |
2:4:2:1
|
|
n10 |
n#
|
90 |
3:0:0:0
|
91 |
3:0:0:1
|
92 |
3:0:1:0
|
93 |
3:0:1:1
|
94 |
3:0:2:0
|
95 |
3:0:2:1
|
96 |
3:1:0:0
|
97 |
3:1:0:1
|
98 |
3:1:1:0
|
99 |
3:1:1:1
|
100 |
3:1:2:0
|
101 |
3:1:2:1
|
102 |
3:2:0:0
|
103 |
3:2:0:1
|
104 |
3:2:1:0
|
105 |
3:2:1:1
|
106 |
3:2:2:0
|
107 |
3:2:2:1
|
108 |
3:3:0:0
|
109 |
3:3:0:1
|
110 |
3:3:1:0
|
111 |
3:3:1:1
|
112 |
3:3:2:0
|
113 |
3:3:2:1
|
114 |
3:4:0:0
|
115 |
3:4:0:1
|
116 |
3:4:1:0
|
117 |
3:4:1:1
|
118 |
3:4:2:0
|
119 |
3:4:2:1
|
|
n10 |
n#
|
120 |
4:0:0:0
|
121 |
4:0:0:1
|
122 |
4:0:1:0
|
123 |
4:0:1:1
|
124 |
4:0:2:0
|
125 |
4:0:2:1
|
126 |
4:1:0:0
|
127 |
4:1:0:1
|
128 |
4:1:1:0
|
129 |
4:1:1:1
|
130 |
4:1:2:0
|
131 |
4:1:2:1
|
132 |
4:2:0:0
|
133 |
4:2:0:1
|
134 |
4:2:1:0
|
135 |
4:2:1:1
|
136 |
4:2:2:0
|
137 |
4:2:2:1
|
138 |
4:3:0:0
|
139 |
4:3:0:1
|
140 |
4:3:1:0
|
141 |
4:3:1:1
|
142 |
4:3:2:0
|
143 |
4:3:2:1
|
144 |
4:4:0:0
|
145 |
4:4:0:1
|
146 |
4:4:1:0
|
147 |
4:4:1:1
|
148 |
4:4:2:0
|
149 |
4:4:2:1
|
|
n10 |
n#
|
150 |
5:0:0:0
|
151 |
5:0:0:1
|
152 |
5:0:1:0
|
153 |
5:0:1:1
|
154 |
5:0:2:0
|
155 |
5:0:2:1
|
156 |
5:1:0:0
|
157 |
5:1:0:1
|
158 |
5:1:1:0
|
159 |
5:1:1:1
|
160 |
5:1:2:0
|
161 |
5:1:2:1
|
162 |
5:2:0:0
|
163 |
5:2:0:1
|
164 |
5:2:1:0
|
165 |
5:2:1:1
|
166 |
5:2:2:0
|
167 |
5:2:2:1
|
168 |
5:3:0:0
|
169 |
5:3:0:1
|
170 |
5:3:1:0
|
171 |
5:3:1:1
|
172 |
5:3:2:0
|
173 |
5:3:2:1
|
174 |
5:4:0:0
|
175 |
5:4:0:1
|
176 |
5:4:1:0
|
177 |
5:4:1:1
|
178 |
5:4:2:0
|
179 |
5:4:2:1
|
|
n10 |
n#
|
180 |
6:0:0:0
|
181 |
6:0:0:1
|
182 |
6:0:1:0
|
183 |
6:0:1:1
|
184 |
6:0:2:0
|
185 |
6:0:2:1
|
186 |
6:1:0:0
|
187 |
6:1:0:1
|
188 |
6:1:1:0
|
189 |
6:1:1:1
|
190 |
6:1:2:0
|
191 |
6:1:2:1
|
192 |
6:2:0:0
|
193 |
6:2:0:1
|
194 |
6:2:1:0
|
195 |
6:2:1:1
|
196 |
6:2:2:0
|
197 |
6:2:2:1
|
198 |
6:3:0:0
|
199 |
6:3:0:1
|
200 |
6:3:1:0
|
201 |
6:3:1:1
|
202 |
6:3:2:0
|
203 |
6:3:2:1
|
204 |
6:4:0:0
|
205 |
6:4:0:1
|
206 |
6:4:1:0
|
207 |
6:4:1:1
|
208 |
6:4:2:0
|
209 |
6:4:2:1
|
|
See also
Notes
- ↑ Inductive proof:
Base case:
- True for
.
Induction step:
-

if and only if
-

if and only if
-
