![Pending changes are displayed on this page Pending changes are displayed on this page](/w/extensions/FlaggedRevs/frontend/modules/img/1.png)
There are no approved revisions of this page, so it may
not have been
reviewed.
This page is based on empirical evidence.
This (probably original) research topic requires further investigation.
This article needs more work.
Please help by expanding it!
If you use all the convergents of the simple continued fraction of a positive real constant
as the terms of a generalized continued fraction, then likewise use the new convergents in another generalized continued fraction, and so on... ad infinitum, for all numbers in the unit interval
, you get the convergents constant for all numbers of that interval. (Cf. Talk:Table_of_convergents_constants#Open_Problem)
Iterated continued fractions from convergents
Cf. Iterated continued fractions from convergents.
In order to get from iterate
to iterate
- Express
with the convergents
of
as a continued fraction ![{\displaystyle \scriptstyle [c_{0}(n);\,c_{1}(n),\,c_{2}(n),\,\ldots ]\,=\,{\frac {1}{q_{0}(n)}}\,[p_{0}(n);\,q_{0}(n)\,q_{1}(n)\,/\,p_{1}(n),\,q_{1}(n)\,q_{2}(n)\,/\,p_{2}(n),\,...];\,}](https://en.wikipedia.org/api/rest_v1/media/math/render/svg/3db87a7b33e6fb9230c16a1445080b5ec2e9a523)
- Compute the convergents
(using the efficient recursive method shown on generalized continued fractions convergents;)
- The next iterate is
![{\displaystyle \scriptstyle x_{n+1}\,=\,[c_{0}(n+1);\,c_{1}(n+1),\,c_{2}(n+1),\,\ldots ].\,}](https://en.wikipedia.org/api/rest_v1/media/math/render/svg/5a02a553539136616fe66cb94495edc359ea6eaf)
For example, starting with
, where
is a positive real constant, first obtain the simple continued fraction
![{\displaystyle x_{0}=[a_{0}(0);a_{1}(0),a_{2}(0),\dots ]=a_{0}(0)+{\cfrac {1}{a_{1}(0)+{\cfrac {1}{a_{2}(0)+{\cfrac {1}{a_{3}(0)+{\cfrac {1}{a_{4}(0)+{\cfrac {1}{a_{5}(0)+{\cfrac {1}{a_{6}(0)+{\cfrac {1}{a_{7}(0)+{\cfrac {1}{\ddots }}}}}}}}}}}}}}}},\,}](https://en.wikipedia.org/api/rest_v1/media/math/render/svg/c6a756c523a58e623211e577eba3d56a2f95dea9)
giving convergents
![{\displaystyle {\Bigg \{}{\frac {p_{0}(1)}{q_{0}(1)}},{\frac {p_{1}(1)}{q_{1}(1)}},{\frac {p_{2}(1)}{q_{2}(1)}},{\frac {p_{3}(1)}{q_{3}(1)}},{\frac {p_{4}(1)}{q_{4}(1)}},{\frac {p_{5}(1)}{q_{5}(1)}},{\frac {p_{6}(1)}{q_{6}(1)}},{\frac {p_{7}(1)}{q_{7}(1)}},...{\Bigg \}}\,}](https://en.wikipedia.org/api/rest_v1/media/math/render/svg/bc91c2be10b17632105033611798b6f13b8d199f)
then
![{\displaystyle x_{1}={\tfrac {p_{0}(1)}{q_{0}(1)}}+{\cfrac {1}{{\tfrac {p_{1}(1)}{q_{1}(1)}}+{\cfrac {1}{{\tfrac {p_{2}(1)}{q_{2}(1)}}+{\cfrac {1}{{\tfrac {p_{3}(1)}{q_{3}(1)}}+{\cfrac {1}{{\tfrac {p_{4}(1)}{q_{4}(1)}}+{\cfrac {1}{{\tfrac {p_{5}(1)}{q_{5}(1)}}+{\cfrac {1}{{\tfrac {p_{6}(1)}{q_{6}(1)}}+{\cfrac {1}{{\tfrac {p_{7}(1)}{q_{7}(1)}}+{\cfrac {1}{\ddots }}}}}}}}}}}}}}}}\,}](https://en.wikipedia.org/api/rest_v1/media/math/render/svg/c6c331fb1f1425d0d675d013fc5fac101edb19b6)
![{\displaystyle ={\frac {1}{q_{0}(1)}}\left\{p_{0}(1)+{\cfrac {q_{0}(1)q_{1}(1)}{p_{1}(1)+{\cfrac {q_{1}(1)q_{2}(1)}{p_{2}(1)+{\cfrac {q_{2}(1)q_{3}(1)}{p_{3}(1)+{\cfrac {q_{3}(1)q_{4}(1)}{p_{4}(1)+{\cfrac {q_{4}(1)q_{5}(1)}{p_{5}(1)+{\cfrac {q_{5}(1)q_{6}(1)}{p_{6}(1)+{\cfrac {q_{6}(1)q_{7}(1)}{p_{7}(1)+{\cfrac {q_{7}(1)q_{8}(1)}{\ddots }}}}}}}}}}}}}}}}\right\}\,}](https://en.wikipedia.org/api/rest_v1/media/math/render/svg/3f27a438b8371a4ccfcfdaf00c0fd10b3902fc17)
![{\displaystyle ={\frac {1}{q_{0}(1)}}\left\{a_{0}(1)+{\cfrac {b_{1}(1)}{a_{1}(1)+{\cfrac {b_{2}(1)}{a_{2}(1)+{\cfrac {b_{3}(1)}{a_{3}(1)+{\cfrac {b_{4}(1)}{a_{4}(1)+{\cfrac {b_{5}(1)}{a_{5}(1)+{\cfrac {b_{6}(1)}{a_{6}(1)+{\cfrac {b_{7}(1)}{a_{7}(1)+{\cfrac {b_{8}(1)}{\ddots }}}}}}}}}}}}}}}}\right\},\,}](https://en.wikipedia.org/api/rest_v1/media/math/render/svg/6835d9258975a30f36dffaf1fded084cd63df144)
giving convergents
![{\displaystyle {\Bigg \{}{\frac {p_{0}(2)}{q_{0}(2)}},{\frac {p_{1}(2)}{q_{1}(2)}},{\frac {p_{2}(2)}{q_{2}(2)}},{\frac {p_{3}(2)}{q_{3}(2)}},{\frac {p_{4}(2)}{q_{4}(2)}},{\frac {p_{5}(2)}{q_{5}(2)}},{\frac {p_{6}(2)}{q_{6}(2)}},{\frac {p_{7}(2)}{q_{7}(2)}},...{\Bigg \}}\,}](https://en.wikipedia.org/api/rest_v1/media/math/render/svg/fa2d346c61e230558fa8c06c1b5865506d101fdc)
![{\displaystyle x_{n}={\tfrac {p_{0}(n)}{q_{0}(n)}}+{\cfrac {1}{{\tfrac {p_{1}(n)}{q_{1}(n)}}+{\cfrac {1}{{\tfrac {p_{2}(n)}{q_{2}(n)}}+{\cfrac {1}{{\tfrac {p_{3}(n)}{q_{3}(n)}}+{\cfrac {1}{{\tfrac {p_{4}(n)}{q_{4}(n)}}+{\cfrac {1}{{\tfrac {p_{5}(n)}{q_{5}(n)}}+{\cfrac {1}{{\tfrac {p_{6}(n)}{q_{6}(n)}}+{\cfrac {1}{{\tfrac {p_{7}(n)}{q_{7}(n)}}+{\cfrac {1}{\ddots }}}}}}}}}}}}}}}}\,}](https://en.wikipedia.org/api/rest_v1/media/math/render/svg/9acb3025b7af5ab6711d8d5805bf587cca6f307e)
![{\displaystyle ={\frac {1}{q_{0}(n)}}\left\{p_{0}(n)+{\cfrac {q_{0}(n)q_{1}(n)}{p_{1}(n)+{\cfrac {q_{1}(n)q_{2}(n)}{p_{2}(n)+{\cfrac {q_{2}(n)q_{3}(n)}{p_{3}(n)+{\cfrac {q_{3}(n)q_{4}(n)}{p_{4}(n)+{\cfrac {q_{4}(n)q_{5}(n)}{p_{5}(n)+{\cfrac {q_{5}(n)q_{6}(n)}{p_{6}(n)+{\cfrac {q_{6}(n)q_{7}(n)}{p_{7}(n)+{\cfrac {q_{7}(n)q_{8}(n)}{\ddots }}}}}}}}}}}}}}}}\right\}\,}](https://en.wikipedia.org/api/rest_v1/media/math/render/svg/122aa9ed578eb23ee0e536999747217bd3c8f591)
![{\displaystyle ={\frac {1}{q_{0}(n)}}\left\{a_{0}(n)+{\cfrac {b_{1}(n)}{a_{1}(n)+{\cfrac {b_{2}(n)}{a_{2}(n)+{\cfrac {b_{3}(n)}{a_{3}(n)+{\cfrac {b_{4}(n)}{a_{4}(n)+{\cfrac {b_{5}(n)}{a_{5}(n)+{\cfrac {b_{6}(n)}{a_{6}(n)+{\cfrac {b_{7}(n)}{a_{7}(n)+{\cfrac {b_{8}(n)}{\ddots }}}}}}}}}}}}}}}}\right\},\,}](https://en.wikipedia.org/api/rest_v1/media/math/render/svg/f3d7c2f805abedc945c10b670cce0d2b565f0dfb)
giving convergents
![{\displaystyle {\Bigg \{}{\frac {p_{0}(n+1)}{q_{0}(n+1)}},{\frac {p_{1}(n+1)}{q_{1}(n+1)}},{\frac {p_{2}(n+1)}{q_{2}(n+1)}},{\frac {p_{3}(n+1)}{q_{3}(n+1)}},{\frac {p_{4}(n+1)}{q_{4}(n+1)}},{\frac {p_{5}(n+1)}{q_{5}(n+1)}},{\frac {p_{6}(n+1)}{q_{6}(n+1)}},{\frac {p_{7}(n+1)}{q_{7}(n+1)}},...{\Bigg \}}\,}](https://en.wikipedia.org/api/rest_v1/media/math/render/svg/dc50a3453c61ff8ab3044fdc44b7a44116d92794)
Convergence of iterated continued fractions from convergents
We define the limit of iterated continued fractions from convergents for a constant
as
![{\displaystyle x_{\infty }\equiv \lim _{n\to \infty }x_{n}\,}](https://en.wikipedia.org/api/rest_v1/media/math/render/svg/eae2e1608a02d91ac48b2c8f6ed0d3a74e7577d6)
Convergents constants
Table of convergents constants
Cf. Table of convergents constants.
See also
External links