This site is supported by donations to The OEIS Foundation.

(a(n),b(n))-Pascal triangle

From OeisWiki
Jump to: navigation, search

The (a(n),b(n))-Pascal triangle, or (an,bn)-Pascal triangle, is a generalization of the (a,b)-Pascal triangle where ana(n) and bnb(n) are integer sequences, keeping the original Pascal triangle recurrence rule unchanged for the interior cells of the triangle.


The rectangular version of the (an,bn)-Pascal triangle
n = 0 b0
1 a1 b1
2 a2
b2
3 a3

b3
4 a4


b4
5 a5



b5
6 a6




b6
7 a7





b7
8 a8






b8
9 a9







b9
10 a10








b10
11 a11









b11
12 a12










b12
j = 0 1 2 3 4 5 6 7 8 9 10 11 12


Recursion rule

The (an,bn)-Pascal triangle recursion rule is:

Formulae

Multiplicative (p(2n),p(2n+1))-Pascal triangle giving a Gödel encoding of coefficients

Multiplicative (p(2n),p(2n+1))-Pascal triangle giving a Gödel encoding of coefficients
n = 0
1
2
3
4




5





6


7



8



9



10




11




12




j = 0 1 2 3 4 5 6 7 8 9 10 11 12

The multiplicative (p2n,p2n+1)-Pascal triangle gives a Gödel encoding of the (an,bn)-Pascal triangle, i.e.:

where the exponents are the coefficients in

where

For example:

corresponds to

Multiplicative recursion rule

The multiplicative (p2n,p2n+1)-Pascal triangle recursion rule is:

where is the ith prime.

(a(n),b(n))-Pascal triangle rows

(a(n),b(n))-Pascal triangle rows sums

(a(n),b(n))-Pascal triangle rows alternating sign sums

(a(n),b(n))-Pascal (rectangular) triangle columns

Table of columns sequences

Table of columns sequences related formulae

(a(n),b(n))-Pascal (rectangular) triangle falling diagonals

Table of falling diagonals sequences

Table of falling diagonals sequences related formulae

(a(n),b(n))-Pascal (rectangular) triangle rising diagonals

(a(n),b(n))-Pascal (rectangular) triangle rising diagonals sums

(a(n),b(n))-Pascal (rectangular) triangle rising diagonals alternating sign sums

(a(n),b(n))-Pascal triangle central elements

See also

Notes