login
Non-Ideal Waring's Problem

Non-Ideal Waring's Problem

Let N denote the set of all nonnegative integers. A subset S of N is a basis of order h if every element of N is a sum of exactly h elements of S (with repetitions allowed). We write . Waring's problem involves the set of all nonnegative kth powers of integers. Hilbert [14] proved that for all suitably large h, for each k, and the least possible h is called g(k). We discuss the calculation of g(k) in our article Powers of 3/2 modulo one. This is regarded as the "ideal" part of Waring's problem (even though it is not yet completely solved).

A subset S of N is an asymptotic basis of order h if every sufficiently large element of N is a sum of exactly h elements of S (again, with repetitions allowed). In the special case , define G(k) to be the least possible h, for each k. Clearly , and Hurwitz [15] and Maillet [16] proved that . In other words, there are arbitrarily large integers which are not the sum of k kth powers [1].

We omit discussion [2,3] of a number of important estimates for G(k), applicable for many values of k, and simply give the most current results for small k-values:

k who proved
and when
lower
bound
G(k) upper
bound
who proved
and when
2 Lagrange (1770) - 4 - Lagrange (1770)
3 Hurwitz & Maillet (1908) 4 - 7 Linnik (1943)
4 Kempner (1912) - 16 - Davenport (1939)
5 Hurwitz & Maillet (1908) 6 - 17 Vaughan & Wooley (1995)
6 Hardy & Littlewood (1922) 9 - 24 Vaughan & Wooley (1995)
7 Hurwitz & Maillet (1908) 8 - 33 Vaughan & Wooley (1995)
8 Hardy & Littlewood (1922) 32 - 42 Vaughan & Wooley (1995)
9 Hardy & Littlewood (1922) 13 - 50 Vaughan & Wooley (1999)
10 Hardy & Littlewood (1922) 12 - 59 Vaughan & Wooley (1999)
11 Hurwitz & Maillet (1908) 12 - 67 Vaughan & Wooley (1999)
12 Hardy & Littlewood (1922) 16 - 76 Vaughan & Wooley (1999)
13 Hurwitz & Maillet (1908) 14 - 84 Vaughan & Wooley (1999)
14 Hurwitz & Maillet (1908) 15 - 92 Vaughan & Wooley (1999)
15 Hurwitz & Maillet (1908) 16 - 100 Vaughan & Wooley (1999)
16 Hardy & Littlewood (1922) 64 - 109 Vaughan & Wooley (1999)
17 Hurwitz & Maillet (1908) 18 - 117 Vaughan & Wooley (1999)
18 Hardy & Littlewood (1922) 27 - 125 Vaughan & Wooley (1999)
19 Hurwitz & Maillet (1908) 20 - 134 Vaughan & Wooley (1999)
20 Hardy & Littlewood (1922) 25 - 142 Vaughan & Wooley (1999)
21 Hardy & Littlewood (1922) 24 - * *
22 Hurwitz & Maillet (1908) 23 - * *
23 Hurwitz & Maillet (1908) 24 - * *
24 Hardy & Littlewood (1922) 32 - * *
25 Hurwitz & Maillet (1908) 26 - * *
26 Hurwitz & Maillet (1908) 27 - * *
27 Hardy & Littlewood (1922) 40 - * *
28 Hurwitz & Maillet (1908) 29 - * *
29 Hurwitz & Maillet (1908) 30 - * *
30 Hurwitz & Maillet (1908) 31 - * *
31 Hurwitz & Maillet (1908) 32 - * *
32 Hardy & Littlewood (1922) 128 - * *

The asterick (*) means that, while algorithms for computing bounds exist [5,7], I haven't seen the bounds explicitly in print yet. The most recent reference [8] awaits publication. See [9,10] for numerical evidence supporting the conjecture that G(3)=4. Landreau [11] found a large integer 7373170279850 which requires more than four cubes; conceivably this may be the largest such integer. See also [12,13] for the asymptotics of the number of representations of n as a sum of four cubes, which interestingly turns out to involve , where is Euler's gamma function.

Postscript
See [18] for recently gathered evidence that G(3)=4.

References

  1. G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford 1985; MR 81i:10002.
  2. P. Ribenboim, The Book of Prime Number Records, 2nd ed., Springer-Verlag, 1989; MR 90g:11127.
  3. M. B. Nathanson, Additive Number Theory: The Classical Bases, Springer-Verlag, 1996; MR 97e:11004.
  4. R. C. Vaughan and T. D. Wooley, Further improvements in Waring's problem, Acta Math. 174 (1995) 147-240; MR 96j:11129a.
  5. T. D. Wooley, New estimates for smooth Weyl sums, J. London Math. Soc. 51 (1995) 1-13; MR 96e:11109.
  6. Zai Zhao Meng, Some new results on Waring's problem, J. China Univ. Sci. Tech. 27 (1997) 1-5; MR 98e:11115.
  7. T. D. Wooley, Large improvements in Waring's problem, Annals of Math. 135 (1992) 131-164; MR 93b:11129.
  8. R. C. Vaughan and T. D. Wooley, Further improvements in Waring's problem, IV: higher powers, Acta Arith. 94 (2000) 203-285.
  9. J. Bohman and C.-E. Fröberg, Numerical investigation of Waring's problem for cubes, BIT 21 (1981) 118-122; MR 82k:10063.
  10. F. Romani, Computations concerning Waring's problem for cubes, Calcolo 19 (1982) 415-431; MR 85g:11088.
  11. D. Rusin, The Waring problem (Mathematical Atlas).
  12. J. Brüdern and N. Watt, On Waring's problem for four cubes, Duke Math. J. 77 (1995) 583-599; MR 96e:11121.
  13. K. Kawada, On the sum of four cubes, Mathematika 43 (1996) 323-348; MR 97m:11125.
  14. D. Hilbert, Beweis für die Darstellbarkeit der ganzen Zahlen durch eine feste Anzahl nter Potenzen (Waringsches Problem), Nachrichten Königlichen Gesellschaft der Wissenschaften zu Göttingen, Math.-Phys. Klasse (1909) 17-36; Math. Annalen 67 (1909) 281-305.
  15. A. Hurwitz. Über die Darstellung der ganzen Zahlen als Summen von nter Potenzen ganzer Zahlen, Math. Annalen 65 (1908) 424-427.
  16. E. Maillet, Sur la décomposition d'un entier en une somme de puissances huitièmes d'entiers (Problème de Waring), Bull. Soc. Math. France 36 (1908) 69-77.
  17. W. J. Ellison, Waring's problem, Amer. Math. Monthly 78 (1971) 10-36; MR 54 #2611.
  18. J.-M. Deshouillers, F. Hennecart and B. Landreau, 7,373,170,279,850, Math. Comp. 69 (2000) 421-439; MR 2000i:11150.
Return to the Powers of 3/2 Modulo One essay.

Copyright © 1995-2001 by Steven Finch.
All rights reserved.