|
Non-Ideal Waring's Problem
Let N denote the set of all nonnegative integers.
A subset S of N is a basis of order h if every element of N
is a sum of exactly h elements of S (with repetitions allowed).
We write .
Waring's problem involves the set
of all nonnegative kth powers of integers. Hilbert [14] proved that
for all suitably large h, for each k,
and the least possible h is called g(k). We discuss the calculation of
g(k) in our article Powers of 3/2 modulo one.
This is regarded as the "ideal" part of Waring's problem (even though it
is not yet completely solved).
A subset S of N is an asymptotic basis of order h if every
sufficiently large element of N is a sum of exactly h elements of
S (again, with repetitions allowed). In the special case
, define G(k) to be the least possible
h, for each k. Clearly , and
Hurwitz [15] and Maillet [16] proved that .
In other words, there are arbitrarily large integers which are not the
sum of k kth powers [1].
We omit discussion [2,3] of a number of important estimates for
G(k), applicable for many values of k, and simply give the most current
results for small k-values:
k |
who proved and when |
lower bound |
G(k) |
upper bound |
who proved and when |
2 |
Lagrange (1770) |
- |
4 |
- |
Lagrange (1770) |
3 |
Hurwitz & Maillet (1908) |
4 |
- |
7 |
Linnik (1943) |
4 |
Kempner (1912) |
- |
16 |
- |
Davenport (1939) |
5 |
Hurwitz & Maillet (1908) |
6 |
- |
17 |
Vaughan & Wooley (1995) |
6 |
Hardy & Littlewood (1922) |
9 |
- |
24 |
Vaughan & Wooley (1995) |
7 |
Hurwitz & Maillet (1908) |
8 |
- |
33 |
Vaughan & Wooley (1995) |
8 |
Hardy & Littlewood (1922) |
32 |
- |
42 |
Vaughan & Wooley (1995) |
9 |
Hardy & Littlewood (1922) |
13 |
- |
50 |
Vaughan & Wooley (1999) |
10 |
Hardy & Littlewood (1922) |
12 |
- |
59 |
Vaughan & Wooley (1999) |
11 |
Hurwitz & Maillet (1908) |
12 |
- |
67 |
Vaughan & Wooley (1999) |
12 |
Hardy & Littlewood (1922) |
16 |
- |
76 |
Vaughan & Wooley (1999) |
13 |
Hurwitz & Maillet (1908) |
14 |
- |
84 |
Vaughan & Wooley (1999) |
14 |
Hurwitz & Maillet (1908) |
15 |
- |
92 |
Vaughan & Wooley (1999) |
15 |
Hurwitz & Maillet (1908) |
16 |
- |
100 |
Vaughan & Wooley (1999) |
16 |
Hardy & Littlewood (1922) |
64 |
- |
109 |
Vaughan & Wooley (1999) |
17 |
Hurwitz & Maillet (1908) |
18 |
- |
117 |
Vaughan & Wooley (1999) |
18 |
Hardy & Littlewood (1922) |
27 |
- |
125 |
Vaughan & Wooley (1999) |
19 |
Hurwitz & Maillet (1908) |
20 |
- |
134 |
Vaughan & Wooley (1999) |
20 |
Hardy & Littlewood (1922) |
25 |
- |
142 |
Vaughan & Wooley (1999) |
21 |
Hardy & Littlewood (1922) |
24 |
- |
* |
* |
22 |
Hurwitz & Maillet (1908) |
23 |
- |
* |
* |
23 |
Hurwitz & Maillet (1908) |
24 |
- |
* |
* |
24 |
Hardy & Littlewood (1922) |
32 |
- |
* |
* |
25 |
Hurwitz & Maillet (1908) |
26 |
- |
* |
* |
26 |
Hurwitz & Maillet (1908) |
27 |
- |
* |
* |
27 |
Hardy & Littlewood (1922) |
40 |
- |
* |
* |
28 |
Hurwitz & Maillet (1908) |
29 |
- |
* |
* |
29 |
Hurwitz & Maillet (1908) |
30 |
- |
* |
* |
30 |
Hurwitz & Maillet (1908) |
31 |
- |
* |
* |
31 |
Hurwitz & Maillet (1908) |
32 |
- |
* |
* |
32 |
Hardy & Littlewood (1922) |
128 |
- |
* |
* |
The asterick (*) means that, while algorithms for computing bounds exist [5,7], I haven't
seen the bounds explicitly in print yet. The most recent reference [8] awaits publication.
See [9,10] for numerical evidence supporting the conjecture that
G(3)=4. Landreau [11] found a large integer 7373170279850 which requires more than four
cubes; conceivably this may be the largest such integer.
See also [12,13] for the asymptotics of the number of representations of n as a
sum of four cubes, which interestingly turns out to involve ,
where is Euler's gamma function.
Postscript
See [18] for recently gathered evidence that G(3)=4.
References
- G. H. Hardy and E. M. Wright, An Introduction to the Theory of
Numbers, 5th ed., Oxford 1985;
MR 81i:10002.
- P. Ribenboim, The Book of Prime Number Records, 2nd ed.,
Springer-Verlag, 1989;
MR 90g:11127.
- M. B. Nathanson, Additive Number Theory: The Classical Bases,
Springer-Verlag, 1996;
MR 97e:11004.
- R. C. Vaughan and T. D. Wooley, Further improvements in Waring's problem,
Acta Math. 174 (1995) 147-240;
MR 96j:11129a.
- T. D. Wooley, New estimates for smooth Weyl sums, J. London Math. Soc.
51 (1995) 1-13;
MR 96e:11109.
- Zai Zhao Meng, Some new results on Waring's problem, J. China Univ. Sci. Tech.
27 (1997) 1-5;
MR 98e:11115.
- T. D. Wooley, Large improvements in Waring's problem, Annals of Math. 135 (1992)
131-164;
MR 93b:11129.
- R. C. Vaughan and T. D. Wooley, Further improvements in Waring's problem,
IV: higher powers, Acta Arith. 94 (2000) 203-285.
- J. Bohman and C.-E. Fröberg, Numerical investigation of Waring's problem for cubes,
BIT 21 (1981) 118-122;
MR 82k:10063.
- F. Romani, Computations concerning Waring's problem for cubes, Calcolo
19 (1982) 415-431;
MR 85g:11088.
- D. Rusin, The Waring problem (Mathematical Atlas).
- J. Brüdern and N. Watt, On Waring's problem for four cubes, Duke Math. J.
77 (1995) 583-599;
MR 96e:11121.
- K. Kawada, On the sum of four cubes, Mathematika 43 (1996) 323-348;
MR 97m:11125.
- D. Hilbert, Beweis für die Darstellbarkeit der ganzen Zahlen durch eine feste
Anzahl nter Potenzen (Waringsches Problem), Nachrichten Königlichen
Gesellschaft der Wissenschaften zu Göttingen, Math.-Phys. Klasse (1909) 17-36;
Math. Annalen 67 (1909) 281-305.
- A. Hurwitz. Über die Darstellung der ganzen Zahlen als Summen von nter
Potenzen ganzer Zahlen, Math. Annalen 65 (1908) 424-427.
- E. Maillet, Sur la décomposition d'un entier en une somme de puissances
huitièmes d'entiers (Problème de Waring), Bull. Soc. Math. France
36 (1908) 69-77.
- W. J. Ellison, Waring's problem, Amer. Math. Monthly 78 (1971) 10-36;
MR 54 #2611.
- J.-M. Deshouillers, F. Hennecart and B. Landreau, 7,373,170,279,850, Math. Comp.
69 (2000) 421-439;
MR 2000i:11150.
Return to the Powers of 3/2 Modulo One essay.
Copyright © 1995-2001 by Steven Finch.
All rights reserved.
|