login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A006460
Image of n after 3k iterates of '3x+1' map (k large).
(Formerly M0304)
3
1, 2, 2, 4, 4, 4, 2, 1, 2, 1, 4, 1, 1, 4, 4, 2, 1, 4, 4, 2, 2, 1, 1, 2, 4, 2, 1, 1, 1, 1, 2, 4, 4, 2, 2, 1, 1, 1, 2, 4, 2, 4, 4, 2, 2, 2, 4, 4, 1, 1, 1, 4, 4, 2, 2, 2, 4, 2, 4, 2, 2, 4, 4, 1, 1, 1, 1, 4, 4, 4, 1, 2, 2, 2, 4, 2, 2, 4, 4, 1, 2, 4, 4, 1, 1, 1, 1, 4, 1, 4, 4, 4, 4, 1, 1, 1, 2, 2, 2, 2, 2, 2, 1, 1, 4
OFFSET
1,2
REFERENCES
R. K. Guy, Unsolved Problems in Number Theory, E16.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
FORMULA
For n > 2: a(n) = 4 if L = 0, otherwise L, where L = A139399(n) mod 3. - Reinhard Zumkeller, Nov 16 2013
MATHEMATICA
f[n_] := If[EvenQ[n], n/2, 3 n + 1];
a[n_] := With[{ff = NestWhileList[f, n, {#1, #2, #3} != {4, 2, 1}&, 3]}, ff[[Switch[Mod[Length[ff], 3], 0, -3, 1, -1, 2, -2]]]];
Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Aug 08 2022 *)
PROG
(Haskell)
a006460 = f 0 where
f k x | mod k 3 == 0 && x `elem` [1, 2, 4] = x
| otherwise = f (k+1) (a006370 x)
-- Reinhard Zumkeller, Nov 16 2013
CROSSREFS
Cf. A006370, A076052 (partial sums), A139399.
Sequence in context: A231731 A143358 A143729 * A064137 A329588 A104202
KEYWORD
nonn,nice
EXTENSIONS
More terms from Larry Reeves (larryr(AT)acm.org), Apr 27 2001
STATUS
approved