OFFSET
0,2
COMMENTS
Conjecture: for n > 0, a(n) == 2 (mod 4).
LINKS
Paul D. Hanna, Table of n, a(n) for n = 0..200
FORMULA
G.f. A(x) = Sum_{n>=0} a(n)*x^n satisfies the following formulas.
(1) 1/2 = Sum_{n=-oo..+oo} (x*A(x))^n * (A(x)^n + x)^(3*n-1) * (x^n + A(x))^(3*n-1).
(2) 1/2 = Sum_{n=-oo..+oo} (x*A(x))^(3*n^2) / ( (1 + x*A(x)^n)^(3*n+1) * (1 + x^n*A(x))^(3*n+1) ).
EXAMPLE
G.f.: A(x) = 1 + 2*x + 66*x^2 + 1986*x^3 + 70750*x^4 + 2773026*x^5 + 115646874*x^6 + 5037785442*x^7 + 226634621738*x^8 + ...
PROG
(PARI) {a(n) = my(V=[1]); for(i=1, n, V = concat(V, 0); A = Ser(V);
V[#V] = polcoef( 4*sum(m=-#V, #V, x^m*A^m * (A^m + x)^(3*m-1) * (A + x^m)^(3*m-1) ), #V-1); ); V[n+1]}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn,new
AUTHOR
Paul D. Hanna, Feb 21 2025
STATUS
approved