login
A381100
Number of integer triples i <= j <= k such that a non-degenerate triangle with sides (i, j, k) fits inside an equilateral triangle with sides (n, n, n), possibly touching its boundary from inside.
0
1, 2, 5, 10, 18, 29, 44, 62, 82, 109, 141, 180, 226, 279, 339, 403, 475, 557, 651, 755, 870, 993, 1125, 1269, 1425, 1595, 1780, 1976, 2188, 2417, 2652, 2905, 3173, 3461, 3769, 4090, 4436, 4788, 5161, 5558, 5968, 6405, 6857, 7340, 7840, 8355, 8893, 9463, 10048
OFFSET
1,2
LINKS
EXAMPLE
For n = 2, triangles (1, 1, 1) and (2, 2, 2) can fit inside (2, 2, 2), so a(2) = 2.
MATHEMATICA
ClearAll[checkOnce, triangleInTriangleQ, a];
checkOnce[{a_, b_, c_}, {p_, q_, r_}] := With[{d = (a + b - c) (a - b + c) (-a + b + c) (a + b + c), s = (p + q - r) (p - q + r) (-p + q + r) (p + q + r), u = p^2 + q^2 - r^2, v = p^2 - q^2 + r^2}, p <= a && a^2 s <= d p^2 && u v >= 0 && s (a^2 - b^2 + c^2)^2 <= d (2 a p - u)^2 && s (a^2 + b^2 - c^2)^2 <= d (2 a p - v)^2];
triangleInTriangleQ[a_, b_, c_, p_, q_, r_] := Or @@ Flatten[Table[checkOnce[abc, pqr], {abc, {{a, b, c}, {b, c, a}, {c, a, b}}}, {pqr, Permutations[{p, q, r}]}]];
a[n_] := Total[Flatten[Table[Boole[triangleInTriangleQ[n, n, n, p, q, r]], {p, n}, {q, p}, {r, p - q + 1, q}]]];
Table[a[n], {n, 1, 49}]
CROSSREFS
Cf. A331250.
Sequence in context: A077631 A350878 A354246 * A025223 A348919 A177787
KEYWORD
easy,nonn,new
AUTHOR
STATUS
approved