login
A381082
Triangle T(m, n, k) for m = 2, read by rows, where the columns are the coefficients of the standard expansion of the function f(x) = (-log(1-x))^(k)*exp(-m*x)/k!.
0
1, -2, 1, 4, -3, 1, -8, 8, -3, 1, 16, -18, 11, -2, 1, -32, 44, -20, 15, 0, 1, 64, -80, 94, 5, 25, 3, 1, -128, 272, 56, 294, 105, 49, 7, 1, 256, 112, 1868, 1596, 1169, 392, 98, 12, 1, -512, 5280, 12216, 16148, 10290, 4305, 1092, 186, 18, 1
OFFSET
0,2
FORMULA
T(m, n, k) = Sum_{i=0..n} Stirling1(n-i, k)*binomial(n, i)*m^(i)*(-1)^(n-k), for m = 2.
EXAMPLE
Triangle starts:
[0] 1;
[1] -2, 1;
[2] 4, -3, 1;
[3] -8, 8, -3, 1;
[4] 16, -18, 11, -2, 1;
[5] -32, 44, -20, 15, 0, 1;
[6] 64, -80, 94, 5, 25, 3, 1;
[7] -128, 272, 56, 294, 105, 49, 7, 1;
[8] 256, 112, 1868, 1596, 1169, 392, 98, 12, 1;
[9] -512, 5280, 12216, 16148, 10290, 4305, 1092, 186, 18, 1;
...
MAPLE
T:=(m, n, k)->add(Stirling1(n-i, k)*binomial(n, i)*m^(i)*(-1)^(n-k), i=0..n):
m:=2:seq(print(seq(T(m, n, k), k=0..n)), n=0..9);
CROSSREFS
Column 0 gives A122803.
Column 1 gives A346397.
Row sums give A000023.
Triangles: for m = -3 is A327997; for m = -2 is A137346 (unsigned); for m = -1 is A094816; for m = 0 is A132393; for m = 1 is A269953.
Sequence in context: A103316 A332389 A140069 * A105851 A106195 A247023
KEYWORD
sign,tabl,new
AUTHOR
STATUS
approved