%I #8 Feb 10 2025 09:33:11
%S 2,2,1,2,3,4,10147,24
%N Least positive k such that n^n * k^k - 1 is a prime, or 0 if no such k exists.
%C a(8) > 10^5 or a(8) = 0.
%C a(9) = 0, a(10) = 3, a(11) = 3142, a(12) = 559, a(13) = 3558.
%C a(14) > 10^5 or a(14) = 0.
%F a(n) = A231735(n^n).
%e The least k > 0 such that 4^4*k^k - 1 is a prime is k = 3, so a(4) = 3.
%o (PARI) a(n) = for(k=1, oo, if(ispseudoprime(n^n*k^k-1), return(k))) \\ Does not terminate if a(n) = 0.
%Y Cf. A228175, A231119, A231735.
%K nonn,hard,more,new
%O 0,1
%A _Jason Yuen_, Feb 07 2025