%I #6 Jan 28 2025 20:51:24
%S 1,1,1,2,2,1,5,8,5,2,17,33,30,13,3,79,198,208,118,35,6,554,1571,1894,
%T 1232,472,104,12,5283,16431,21440,15545,6879,1914,315,27,65346,213831,
%U 296952,233027,115134,37311,7881,1021,65,966156,3288821,4799336,4019360,2163112,787065,196267,32857,3407,175
%N Triangle read by rows: T(n,k) is the number of unsensed combinatorial maps with n edges and k vertices, 1 <= k <= n + 1.
%C By duality, also the number of unsensed combinatorial maps with n edges and k faces.
%F T(n,k) = (A380615(n,k) + A380617(n,k))/2.
%e Triangle begins:
%e n\k | 1 2 3 4 5 6 7 8 9
%e ----+--------------------------------------------------------------
%e 0 | 1;
%e 1 | 1, 1;
%e 2 | 2, 2, 1;
%e 3 | 5, 8, 5, 2;
%e 4 | 17, 33, 30, 13, 3;
%e 5 | 79, 198, 208, 118, 35, 6;
%e 6 | 554, 1571, 1894, 1232, 472, 104, 12;
%e 7 | 5283, 16431, 21440, 15545, 6879, 1914, 315, 27;
%e 8 | 65346, 213831, 296952, 233027, 115134, 37311, 7881, 1021, 65;
%e ...
%Y Row sums are A214816.
%Y Main diagonal is A006082(n+1).
%Y Columns 1..3 are A054499, A380620, A380621.
%Y Cf. A053979 (rooted), A277741 (planar), A380615 (sensed), A380617 (achiral).
%K nonn,tabl
%O 0,4
%A _Andrew Howroyd_, Jan 28 2025