login
a(n) = n! * Sum_{k=0..n} binomial(2*n-2,k)/(n-k)!.
2

%I #10 Jan 25 2025 11:27:17

%S 1,1,7,73,1045,19081,424051,11109337,335262313,11453449105,

%T 436944953791,18412283563081,849345673881277,42570185481576793,

%U 2303643608370636715,133859418832759525081,8312945340897388101841,549460711493172343519777,38513032385247860120975863

%N a(n) = n! * Sum_{k=0..n} binomial(2*n-2,k)/(n-k)!.

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Laguerre_polynomials">Laguerre polynomials</a>

%H <a href="/index/La#Laguerre">Index entries for sequences related to Laguerre polynomials</a>

%F a(n) = n! * LaguerreL(n, n-2, -1).

%F a(n) = n! * [x^n] exp(x/(1 - x))/(1 - x)^(n-1).

%o (PARI) a(n) = n!*pollaguerre(n, n-2, -1);

%Y Cf. A082545, A152059, A251568, A293985, A343832, A380491, A380493.

%K nonn

%O 0,3

%A _Seiichi Manyama_, Jan 25 2025