login
A380437
Integers with at least 1 proper factorization for which the sum of the squares of the factors is a square, whose square root is also a factor of that number.
0
16, 108, 192, 240, 256, 300, 576, 768, 864, 960, 1024, 1080, 1152, 1200, 1260, 1296, 1344, 1350, 1458, 1500, 1680, 1836, 2016, 2160, 2304, 2400, 2592, 2688, 2700, 2772, 2800, 2880, 2916, 3024, 3240, 3264, 3344, 3510, 3600, 3780, 3840, 4096, 4400, 4608, 4800
OFFSET
1,1
COMMENTS
This sequence includes all values b^(c^2) for each integer b >= 2 and c >= 2 where the prime factors of c are equal to or a subset of the prime factors of b. In these cases, c*b, which is the square root of the sum of c^2 squares of b, will always be a factor of b^(c^2). E.g. b=2 and c=2 (both with only {2} as their prime factor) gives 2^(2^2) = 16 (a(1)), which can be factored as {2, 2, 2, 2}, for which sqrt(2^2 + 2^2 + 2^2 + 2^2)=4, also a factor of 16.
EXAMPLE
a(1) = 16: {2, 2, 2, 2} (2 * 2 * 2 * 2 = 16 and sqrt(2^2 + 2^2 + 2^2 + 2^2) = 4, which is also a factor of 16).
a(2) = 108: {3, 6, 6} (3 * 6 * 6 = 108 and sqrt(3^2 + 6^2 + 6^2) = 9, which is also a factor of 108).
a(3) = 192: {2, 2, 2, 4, 6} (2 * 2 * 2 * 4 * 6 = 192 and sqrt(2^2 + 2^2 + 2^2 + 4^2 + 6^2) = 8, which is also a factor of 192).
PROG
(PARI) r()={my(i=if(!#s2, 0, #s2[#s2])%#s1[1]+1); if(i==1, listput(s2, List())); for(i2=0, s1[#s1][i], listput(s2[#s2], i2); if(i<#s1[#s1], r(), p=prod(i3=1, #s2[#s2], v[1][i3]^s2[#s2][i3]); if(p>1 && (!#f || p>=f[#f]), listput(f, p); listput(s1, s1[#s1]); for(i3=1, #s2[#s2], s1[#s1][i3]-=s2[#s2][i3]); if(vecsum(s1[#s1])>0, r(), if(issquare(sum(i3=1, #f, f[i3]^2)), d=sqrtint(sum(i3=1, #f, f[i3]^2)); mapput(m, d, if(mapisdefined(m, d), mapget(m, d), 0)+1))); listpop(s1); listpop(f))); listpop(s2[#s2])); if(i==1, listpop(s2))}
for(t=2, 1000, v=Vec(factor(t)); s1=List([v[2]]); s2=List(); f=List(); m=Map(); r(); m2=Vec(Mat(m)); for(f2=1, #m2[1]-1, if(t%m2[1][f2]==0, print(t); break)))
CROSSREFS
Subset of A380436.
Sequence in context: A097762 A297610 A083469 * A224160 A224411 A260357
KEYWORD
nonn,new
AUTHOR
Charles L. Hohn, Jan 24 2025
STATUS
approved