%I #7 Jan 09 2025 08:00:30
%S 1,2,16,256,5856,175296,6486016,285756416,14606007296,849615763456,
%T 55415153442816,4005309938466816,317750919017168896,
%U 27449350209163821056,2564871898004949303296,257753802183061443444736,27720748513211258671988736,3176821722223524679312736256
%N Expansion of e.g.f. 1/(exp(-4*x) - 4*x)^(1/4).
%F a(n) = n! * Sum_{k=0..n} (-4)^k * (4*k+1)^(n-k) * binomial(-1/4,k)/(n-k)!.
%o (PARI) a(n) = n!*sum(k=0, n, (-4)^k*(4*k+1)^(n-k)*binomial(-1/4, k)/(n-k)!);
%Y Cf. A072597, A380014, A380016.
%K nonn
%O 0,2
%A _Seiichi Manyama_, Jan 09 2025