login
Numbers k that are the maximum of integers |k2|, |k3|, |k5| with |k2| + |k3| + |k5| > 0, and |k2*sqrt(2) + k3*sqrt(3) + k5*sqrt(5)| is smaller than for any smaller value of k.
1

%I #19 Jan 10 2025 02:04:00

%S 1,2,4,5,10,27,94,151,245,296,349,396,435,1835,10235,18708,31637,

%T 53519,160958,535529,643427

%N Numbers k that are the maximum of integers |k2|, |k3|, |k5| with |k2| + |k3| + |k5| > 0, and |k2*sqrt(2) + k3*sqrt(3) + k5*sqrt(5)| is smaller than for any smaller value of k.

%C Maximum absolute value of coefficients in a linear combination of square roots of the first 3 primes producing a new best approximation of 0.

%C a(22) > 10^6.

%e Signs of k2, k3, k5 chosen to get sum > 0.

%e n a(n) *sqrt(2) *sqrt(3) *sqrt(5) sum

%e 1 1 -1 1 0 3.1783724520E-1

%e 2 2 2 1 -2 8.8341977315E-2

%e 3 4 -4 2 1 4.3315343145E-2

%e 4 5 -3 -4 5 9.4959701042E-3

%e 5 10 10 -3 -4 1.7112910252E-3

%e 6 27 -22 27 -7 1.9758965307E-4

%e 7 94 94 2 -61 2.9850721518E-5

%e 8 151 -151 122 1 1.8582565467E-5

%e 9 245 245 -120 -62 1.1268156051E-5

%e 10 296 -190 -227 296 1.1170914545E-5

%e 11 349 39 349 -295 7.4116509219E-6

%e 12 396 -396 242 63 7.3144094166E-6

%e 13 435 435 107 -358 9.7241505322E-8

%e 14 1835 -932 -1608 1835 9.6348194355E-9

%Y Cf. A142238.

%K nonn,more

%O 1,2

%A _Hugo Pfoertner_, Jan 07 2025