login
A379861
Expansion of e.g.f. (1/x) * Series_Reversion( x * exp(x)/(1 + x*exp(x))^2 ).
1
1, 1, 5, 38, 441, 6714, 128245, 2943562, 79049201, 2432351618, 84408126621, 3261942050058, 138946757581225, 6468600047278498, 326782092756236741, 17805164917279808234, 1040857709162817298401, 64983981546315031200258, 4315627103007355018430509
OFFSET
0,3
FORMULA
E.g.f. A(x) satisfies A(x) = exp(-x*A) * (1 + x * A(x) * exp(x*A(x)))^2.
a(n) = (n!/(n+1)) * Sum_{k=0..n} (-n+k-1)^(n-k) * binomial(2*n+2,k)/(n-k)!.
PROG
(PARI) a(n) = n!*sum(k=0, n, (-n+k-1)^(n-k)*binomial(2*n+2, k)/(n-k)!)/(n+1);
CROSSREFS
Sequence in context: A216858 A338867 A110467 * A221845 A299054 A095230
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Jan 04 2025
STATUS
approved