login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A379710
Decimal expansion of the inradius of a disdyakis triacontahedron with unit shorter edge length.
4
2, 6, 7, 9, 9, 6, 9, 3, 4, 0, 2, 0, 4, 8, 3, 5, 5, 7, 8, 5, 7, 9, 5, 5, 3, 3, 2, 7, 4, 5, 9, 8, 0, 6, 7, 6, 7, 0, 8, 5, 4, 2, 3, 0, 3, 8, 1, 6, 8, 2, 7, 7, 3, 3, 2, 1, 5, 2, 6, 8, 9, 0, 3, 6, 3, 3, 7, 1, 5, 1, 7, 6, 3, 8, 1, 7, 0, 2, 0, 9, 1, 9, 7, 1, 5, 0, 0, 0, 0, 6
OFFSET
1,1
COMMENTS
The disdyakis triacontahedron is the dual polyhedron of the truncated icosidodecahedron (great rhombicosidodecahedron).
LINKS
Eric Weisstein's World of Mathematics, Disdyakis Triacontahedron.
FORMULA
Equals sqrt(3477/964 + 7707/(964*sqrt(5))) = sqrt(3477/964 + 7707/(964*A002163)).
EXAMPLE
2.679969340204835578579553327459806767085423038168...
MATHEMATICA
First[RealDigits[Sqrt[3477/964 + 7707/(964*Sqrt[5])], 10, 100]] (* or *)
First[RealDigits[PolyhedronData["DisdyakisTriacontahedron", "Inradius"], 10, 100]]
CROSSREFS
Cf. A379708 (surface area), A379709 (volume), A379388 (midradius), A379711 (dihedral angle).
Cf. A002163.
Sequence in context: A296443 A102046 A019913 * A299421 A327181 A047554
KEYWORD
nonn,cons,easy
AUTHOR
Paolo Xausa, Dec 31 2024
STATUS
approved