login
A379688
Expansion of e.g.f. (1/x) * Series_Reversion( x * (1 - 2*x*exp(x)) ).
4
1, 2, 20, 366, 9992, 365130, 16769292, 929022206, 60323670416, 4494465562770, 378025706776340, 35434198578761862, 3663111561838580568, 414057463231218044186, 50805545997014472821276, 6725525908390393438264590, 955435863749903677193184032, 144987884255349864723586105122
OFFSET
0,2
LINKS
FORMULA
a(n) = (1/(n+1)) * Sum_{k=0..n} 2^(n-k) * (n-k)^k * (2*n-k)!/(k! * (n-k)!).
E.g.f. A(x) satisfies A(x) = 1/( 1 - 2*x*A(x)*exp(x*A(x)) ).
E.g.f.: B(x)^2, where B(x) is the e.g.f. of A380095.
PROG
(PARI) a(n) = sum(k=0, n, 2^(n-k)*(n-k)^k*(2*n-k)!/(k!*(n-k)!))/(n+1);
CROSSREFS
Cf. A380095.
Sequence in context: A060164 A267827 A084948 * A187661 A263207 A376391
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Dec 29 2024
STATUS
approved