login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A379538
Square array read by ascending antidiagonals: T(n,k) is the k-th frugal number in base n.
3
1, 1, 27, 1, 32, 32, 1, 27, 49, 49, 1, 27, 64, 64, 64, 1, 81, 81, 81, 81, 81, 1, 64, 125, 125, 121, 98, 121, 1, 64, 81, 243, 128, 125, 121, 125, 1, 81, 81, 125, 250, 162, 128, 125, 128, 1, 125, 125, 125, 243, 256, 169, 169, 128, 135, 1, 125, 128, 128, 128, 343, 289, 243, 243, 169, 147
OFFSET
2,3
COMMENTS
A frugal number in base n is a number with more digits (in its base n representation) than the total number of digits (in base n representation) of its prime factorization (including exponents > 1).
Following the definition by Pinch (1998), 1 is considered a frugal number.
Some authors call these numbers "economical numbers", as in A046759 which, according to the definition provided here, lists frugal numbers in base 10 (additionally, A046759 does not include 1).
LINKS
Richard G. E. Pinch, Economical numbers, arXiv:math/9802046 [math.NT], 1998.
Giovanni Resta, Frugal numbers, Numbers Aplenty, 2013.
Wikipedia, Frugal number.
EXAMPLE
Array begins:
n\k| 1 2 3 4 5 6 7 8 9 10 ...
---------------------------------------------------------
2 | 1, 27, 32, 49, 64, 81, 121, 125, 128, 135, ... = A379537
3 | 1, 32, 49, 64, 81, 98, 121, 125, 128, 169, ...
4 | 1, 27, 64, 81, 121, 125, 128, 169, 243, 256, ...
5 | 1, 27, 81, 125, 128, 162, 169, 243, 256, 289, ...
6 | 1, 81, 125, 243, 250, 256, 289, 343, 361, 375, ...
7 | 1, 64, 81, 125, 243, 343, 361, 375, 405, 486, ...
8 | 1, 64, 81, 125, 128, 243, 343, 512, 529, 567, ...
9 | 1, 81, 125, 128, 243, 256, 343, 625, 729, 768, ...
10 | 1, 125, 128, 243, 256, 343, 512, 625, 729, 1024, ... = A046759 (without the initial 1)
... | \______ A379539 (main diagonal)
T(2,10) = 135 because 135 = 3^3*5 = 11_2^11_2*101_2; the total number of bits of (11_2, 11_2, 101_2) = 7 < the number of bits of 135 = 10000111_2 (8); and 135 is the tenth number with this property.
MATHEMATICA
Module[{dmax = 15, a, m}, a = Table[m = 0; Table[While[Total[IntegerLength[Select[Flatten[FactorInteger[++m]], # > 1 &], n]] >= IntegerLength[m, n]]; m, dmax-n+2], {n, dmax+1, 2, -1}]; Array[Diagonal[a, # - dmax] &, dmax]]
CROSSREFS
Cf. A377478 (column k = 2), A379537 (row n = 2), A046759 (row n = 10), A379539 (main diagonal).
Cf. A379373.
Sequence in context: A040754 A059952 A244110 * A338659 A040755 A261197
KEYWORD
nonn,tabl,base
AUTHOR
Paolo Xausa, Dec 25 2024
STATUS
approved