OFFSET
2,3
COMMENTS
A frugal number in base n is a number with more digits (in its base n representation) than the total number of digits (in base n representation) of its prime factorization (including exponents > 1).
Following the definition by Pinch (1998), 1 is considered a frugal number.
LINKS
Richard G. E. Pinch, Economical numbers, arXiv:math/9802046 [math.NT], 1998.
Giovanni Resta, Frugal numbers, Numbers Aplenty, 2013.
Wikipedia, Frugal number.
EXAMPLE
Array begins:
n\k| 1 2 3 4 5 6 7 8 9 10 ...
---------------------------------------------------------
2 | 1, 27, 32, 49, 64, 81, 121, 125, 128, 135, ... = A379537
3 | 1, 32, 49, 64, 81, 98, 121, 125, 128, 169, ...
4 | 1, 27, 64, 81, 121, 125, 128, 169, 243, 256, ...
5 | 1, 27, 81, 125, 128, 162, 169, 243, 256, 289, ...
6 | 1, 81, 125, 243, 250, 256, 289, 343, 361, 375, ...
7 | 1, 64, 81, 125, 243, 343, 361, 375, 405, 486, ...
8 | 1, 64, 81, 125, 128, 243, 343, 512, 529, 567, ...
9 | 1, 81, 125, 128, 243, 256, 343, 625, 729, 768, ...
10 | 1, 125, 128, 243, 256, 343, 512, 625, 729, 1024, ... = A046759 (without the initial 1)
... | \______ A379539 (main diagonal)
T(2,10) = 135 because 135 = 3^3*5 = 11_2^11_2*101_2; the total number of bits of (11_2, 11_2, 101_2) = 7 < the number of bits of 135 = 10000111_2 (8); and 135 is the tenth number with this property.
MATHEMATICA
Module[{dmax = 15, a, m}, a = Table[m = 0; Table[While[Total[IntegerLength[Select[Flatten[FactorInteger[++m]], # > 1 &], n]] >= IntegerLength[m, n]]; m, dmax-n+2], {n, dmax+1, 2, -1}]; Array[Diagonal[a, # - dmax] &, dmax]]
CROSSREFS
KEYWORD
AUTHOR
Paolo Xausa, Dec 25 2024
STATUS
approved